Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

A sustainable approach to enhancing fruit production and quality through seaweed based biostimulants

DOI
https://doi.org/10.14719/pst.9420
Submitted
11 May 2025
Published
19-08-2025
Versions

Abstract

Fruits play a crucial role in human nutrition by providing essential vitamins, minerals, antioxidants and dietary fiber, which support overall health and help prevent chronic diseases. Although India, being the second-largest fruit producer globally, but faces significant challenges in fruit production, including environmental stress, postharvest losses and the adverse effects of chemical-intensive agriculture. The increasing demand for sustainable farming solutions has led to the exploration of biostimulants, particularly seaweed-based formulations, which enhance plant growth, nutrient uptake and stress tolerance. Seaweed extracts are rich in bioactive compounds such as phytohormones, amino acids and antioxidants. The role of seaweed based biostimulants in modern agriculture is significant, as they positively impact on soil health, plant metabolism and on improving fruit yield, quality and resilience to abiotic stresses, environmental sustainability. Additionally, the application of seaweed extracts in fruit crops, particularly grapes, apples and citrus, has shown promising results in enhancing yield, improving fruit quality attributes and mitigating stress-related damages. The seaweed at 1 g/L was treated as a foliar treatment that can boost the anthocyanin content, increasing the yield and number of berries in grapevine Vitis vinifera L. The foliar application of seaweed extract at 4 mL/L increases the mineral nutrients like nitrogen, potassium, iron and zinc in the leaves of mango Mangifera indica L. The integration of seaweed biostimulants with precision agriculture techniques further strengthens their role in sustainable farming. Future trends in biostimulant research focus on developing cost-effective, environmentally friendly formulations with enhanced bioactivity. This study underscores the significance of seaweed-based biostimulants as a sustainable alternative to chemical fertilizers and pesticides, contributing to improved agricultural productivity while ensuring ecological balance. By adopting such innovative solutions, the agricultural sector can enhance fruit production efficiency, minimize losses and promote long-term sustainability in horticulture.

References

  1. 1. Van Duyn MAS, Pivonka E. Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. J Am Diet Assoc. 2000;100(12):1511-21. https://doi.org/10.1016/S0002-8223(00)00420-X
  2. 2. Riordan F, Ryan K, Perry IJ, Schulze MB, Andersen LF, Geelen A, et al. A systematic review of methods to assess intake of fruits and vegetables among healthy European adults and children: a DEDIPAC (DEterminants of DIet and Physical Activity) study. Public Health Nutr. 2017;20(3):417-48. https://doi.org/10.1017/S1368980016002366
  3. 3. Collese TS, Nascimento-Ferreira MV, de Moraes ACF, Rendo-Urteaga T, Bel-Serrat S, Moreno LA, et al. Role of fruits and vegetables in adolescent cardiovascular health: a systematic review. Nutr Rev. 2017;75(5):339-49. https://doi.org/10.1093/nutrit/nux002
  4. 4. Zhao CN, Meng X, Li Y, Li S, Liu Q, Tang GY, et al. Fruits for prevention and treatment of cardiovascular diseases. Nutrients. 2017;9(6):598. https://doi.org/10.3390/nu9060598
  5. 5. Khefifi H, Tadeo FR, Selmane R, Ben Mimoun M, Morillon R, Luro F. Effect of environment on citrus fruit abscission and maturation. Acta Hortic. 2014;1119:59-64. https://doi.org/10.17660/ActaHortic.2016.1119.8
  6. 6. Singh K, Kumar S, Pradhan S, Patidar OP. Organic farming for sustainable and nutritional fruit production in India: A review. Int J Curr Microbiol App Sci. 2018;7(5):3033-9. https://doi.org/10.20546/ijcmas.2018.705.354
  7. 7. Kader AA, Yahia E. Postharvest biology of tropical and subtropical fruits. In: Postharvest biology and technology of tropical and subtropical fruits. Elsevier. 2011:79-111. https://doi.org/10.1533/9780857093622.79
  8. 8. Sharma S. Heat stress effects in fruit crops: A review. Agric Rev. 2020;41(1):73-8. https://doi.org/10.18805/ag.R-1951
  9. 9. Goswami AK, Maurya NK, Goswami S, Bardhan K, Singh SK, Prakash J, et al. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: A review. Front Plant Sci. 2022;13:1022167. https://doi.org/10.3389/fpls.2022.1022167
  10. 10. Duarte-Sierra A, Tiznado-Hernández ME, Jha DK, Janmeja N, Arul J. Abiotic stress hormesis: An approach to maintain quality, extend storability and enhance phytochemicals on fresh produce during postharvest. Compr Rev Food Sci Food Saf. 2020;19(6):3659-82. https://doi.org/10.1111/1541-4337.12628
  11. 11. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ. Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci. 2011;16(7):363-71. https://doi.org/10.1016/j.tplants.2011.03.004
  12. 12. Corsi S, Ruggeri G, Zamboni A, Bhakti P, Espen L, Ferrante A, et al. A bibliometric analysis of the scientific literature on biostimulants. Agronomy. 2022;12(6):1257. https://doi.org/10.3390/agronomy12061257
  13. 13. Farruggia D, Di Miceli G, Licata M, Leto C, Salamone F, Novak J. Foliar application of various biostimulants produces contrasting response on yield, essential oil and chemical properties of organically grown sage (Salvia officinalis L.). Front Plant Sci. 2024;15:1397489. https://doi.org/10.3389/fpls.2024.1397489
  14. 14. Nardi S, Schiavon M, Francioso O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules. 2021;26(8):2256. https://doi.org/10.3390/molecules26082256
  15. 15. Singh M, Subahan GM, Sharma S, Singh G, Sharma N, Sharma U, et al. Enhancing horticultural sustainability in the face of climate change: Harnessing biostimulants for environmental stress alleviation in crops. Stresses. 2025;5(1):23. https://doi.org/10.3390/stresses5010023
  16. 16. Gutiérrez-Rodríguez AG, Juarez-Portilla C, Olivares-Banuelos T, Zepeda RC. Anticancer activity of seaweeds. Drug Discov Today. 2018;23(2):434-47. https://doi.org/10.1016/j.drudis.2017.10.019
  17. 17. Xie C, Lee ZJ, Ye S, Barrow CJ, Dunshea FR, Suleria HA. A review on seaweeds and seaweed-derived polysaccharides: Nutrition, chemistry, bioactivities and applications. Food Rev Int. 2024;40(5):1312-47. https://doi.org/10.1080/87559129.2023.2212055
  18. 18. El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KM, Barqawi AA, Mansour AT. Phytochemical and potential properties of seaweeds and their recent applications: A review. Mar Drugs. 2022;20(6):342. https://doi.org/10.3390/md20060342
  19. 19. Mahadevan K. Seaweeds: a sustainable food source. In: Seaweed sustainability. Elsevier. 2015:347-64. https://doi.org/10.1016/B978-0-12-418697-2.00013-1
  20. 20. Kılınç B, Cirik S, Turan G, Tekogul H, Koru E. Seaweeds for food and industrial applications. In: Valdez B, editor. Food industry. London: IntechOpen; 2013. https://doi.org/10.5772/53172
  21. 21. Shelar PS, Reddy S, Shelar GS, Kavitha M, Kumar GP, Reddy G. Medicinal value of seaweeds and its applications: a review. Continental J Pharmacol Toxicol Res. 2012;5(2):1-22.
  22. 22. Morais T, Cotas J, Pacheco D, Pereira L. Seaweeds compounds: an ecosustainable source of cosmetic ingredients? Cosmetics. 2021;8(1):8. https://doi.org/10.3390/cosmetics8010008
  23. 23. Fleurence J. Seaweeds as food. Seaweed Health Dis Prev. 2016:149-67. https://doi.org/10.1016/B978-0-12-802772-1.000 05-1
  24. 24. Hentati F, Tounsi L, Djomdi D, Pierre G, Delattre C, Ursu AV, et al. Bioactive polysaccharides from seaweeds. Molecules. 2020;25(14):3152. https://doi.org/10.3390/molecules25143152
  25. 25. Fleurence J, Morançais M, Dumay J. Seaweed proteins. In: Proteins in food processing. Elsevier. 2018:245-62. https://doi.org/10.1016/B978-0-08-100722-8.00010-3
  26. 26. Ruban P, Govindasamy C. Seaweed fertilizers in modern agriculture. Seaweed Fertil Mod Agric. 2018;14(1):4.
  27. 27. Arumugam N, Chelliapan S, Kamyab H, Thirugnana S, Othman N, Nasri NS. Treatment of wastewater using seaweed: a review. Int J Environ Res Public Health. 2018;15(12):2851. https://doi.org/10.3390/ijerph15122851
  28. 28. Makkar HP, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, et al. Seaweeds for livestock diets: A review. Anim Feed Sci Technol. 2016;212:1-17. https://doi.org/10.1016/j.anifeedsci.2015.09.018
  29. 29. Vatsos IN, Rebours C. Seaweed extracts as antimicrobial agents in aquaculture. J Appl Phycol. 2015;27:2017-35. https://doi.org/10.1007/s10811-014-0506-0
  30. 30. Bedoux G, Hardouin K, Burlot AS, Bourgougnon N. Bioactive components from seaweeds: Cosmetic applications and future development. In: Advances in botanical research. Elsevier. 2014:345-78. https://doi.org/10.1016/B978-0-12-408062-1.00012-3
  31. 31. Rengasamy KR, Mahomoodally MF, Aumeeruddy MZ, Zengin G, Xiao J, Kim DH. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem Toxicol. 2020;135:111013. https://doi.org/10.1016/j.fct.2019.111013
  32. 32. Prasad K. Symbiotic endophytes of glomalin AM fungi, rhizobium and PGPR potential bio stimulants to intensive global food production for sustainable agriculture system. J Microbes Res. 2023;2(2):2836-187. https://doi.org/10.58489/2836-2187/012
  33. 33. Tandel KV, Joshi NH, Tandel GM, Patel M, Tandel JT. Seaweed cultivation in India, a new opportunity of revenue generation. Adv Life Sci. 2016;5(7):2487-91.
  34. 34. Milton RF. Liquid seaweed as a fertilizer. Proc Int Seaweed Symp. 1964;4:428-31.
  35. 35. Kocira S, Szparaga A, Hara P, Treder K, Findura P, Bartoš P, et al. Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Sci Rep. 2020;10(1):17759. https://doi.org/10.1038/s41598-020-74959-0
  36. 36. Dulanlebit YH, Hernani H. Overview of extraction methods for extracting seaweed and its applications. J Penelit Pendidik IPA. 2023;9(2):817-24. https://doi.org/10.29303/jppipa.v9i2.3053
  37. 37. Gullón B, Gagaoua M, Barba FJ, Gullón P, Zhang W, Lorenzo JM. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci Technol. 2020;100:1-18. https://doi.org/10.1016/j.tifs.2020.03.039
  38. 38. Godlewska K, Michalak I, Tuhy Ł, Chojnacka K. Plant growth biostimulants based on different methods of seaweed extraction with water. BioMed Res Int. 2016;2016(1):5973760. https://doi.org/10.1155/2016/5973760
  39. 39. Premarathna AD, Tuvikene R, Fernando P, Adhikari R, Perera M, Ranahewa T, et al. Comparative analysis of proximate compositions, mineral and functional chemical groups of 15 different seaweed species. Sci Rep. 2022;12(1):19610. https://doi.org/10.1038/s41598-022-23609-8
  40. 40. Kristanto FP, Machmudah S, Winardi S, Wahyudiono W, Goto M. Yield and extraction rate analysis of phytochemical compounds from Eucheuma cottonii, Ganoderma lucidum and Gracilaria sp. using subcritical water extraction. ASEAN J Chem Eng. 2021;21(1):27-37. https://doi.org/10.22146/ajche.60513
  41. 41. Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AM, et al. Seaweed phenolics: From extraction to applications. Mar Drugs. 2020;18(8):384. https://doi.org/10.3390/md18080384
  42. 42. Khalil H, Lai T, Tye Y, Rizal S, Chong E, Yap S, et al. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym Lett. 2018;12(4). https://doi.org/10.3144/expresspolymlett.2018.27
  43. 43. Wolle MM, Conklin SD. Speciation analysis of arsenic in seafood and seaweed: part I-evaluation and optimization of methods. Anal Bioanal Chem. 2018;410(22):5675-87. https://doi.org/10.1007/s00216-018-0906-0
  44. 44. Jacobsen C, Sørensen ADM, Holdt SL, Akoh CC, Hermund DB. Source, extraction, characterization and applications of novel antioxidants from seaweed. Annu Rev Food Sci Technol. 2019;10(1):541-68. https://doi.org/10.1146/annurev-food-032818-121401
  45. 45. Sanagi MM, Loh SH, Wan Ibrahim WN, Pourmand N, Salisu A, Wan Ibrahim WA, et al. Agarose-and alginate-based biopolymers for sample preparation: Excellent green extraction tools for this century. J Sep Sci. 2016;39(6):1152-9. https://doi.org/10.1002/jssc.201501207
  46. 46. Grosso C, Valentão P, Ferreres F, Andrade PB. Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs. 2015;13(5):3182-230. https://doi.org/10.3390/md13053182
  47. 47. Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R, Ethiraj K. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides and their antimicrofouling activity. Sci World J. 2014;2014(1):938272. https://doi.org/10.1155/2014/938272
  48. 48. Lim SJ, Chang LS, Fazry S, Mustapha WAW, Babji AS. Functional food & ingredients from seaweed, edible bird’s nest and tropical fruits: a translational research. LWT. 2021;151:112164. https://doi.org/10.1016/j.lwt.2021.112164
  49. 49. Anderson R, Bolton J, Stegenga H. Using the biogeographical distribution and diversity of seaweed species to test the efficacy of marine protected areas in the warm-temperate Agulhas Marine Province, South Africa. Divers Distrib. 2009;15(6):1017-27. https://doi.org/10.1111/j.1472-4642.2009.00614.x
  50. 50. Al-Shatri A, Pakyürek M, Yavic A. Effect of seaweed application on the vegetative growth of strawberry cv. Albion grown under Iraq ecological conditions. Appl Ecol Environ Res. 2020;18(1). https://doi.org/10.15666/aeer/1801_12111225
  51. 51. Haider MW, Ayyub CM, Pervez MA, Asad HU, Manan A, Raza SA, et al. Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.). Soil Environ. 2012;31(2).
  52. 52. Al-Taee R, Al-Juthry H, Al-Badrani W. Effect of inoculation of mycorrhizae, sprayed of nanoseaweeds extract and nano specific fertilizer on growth and yield of wheat. Plant Cell Biotechnol Mol Biol. 2020:35-43.
  53. 53. Aljaberi MA, Altai DS, Ubaid MK, Alhasany A. Response of barley to nano-feeding with seaweed extract and bio-fertilizer. J Glob Innov Agric Sci. 2023;11:199-203. https://doi.org/10.22194/JGIAS/23.1052
  54. 54. Verkleij F. Seaweed extracts in agriculture and horticulture: a review. Biol Agric Hortic. 1992;8(4):309-24. https://doi.org/10.1080/01448765.1992.9754608
  55. 55. Crouch I, Van Staden J. Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J Plant Physiol. 1991;137(3):319-22. https://doi.org/10.1016/S0176-1617(11)80138-0
  56. 56. Lüthje S, Böttger M. On the function of a K-type vitamin in plasma membranes of maize (Zea mays L.) roots. Mitt Inst Allg Bot Univ Hamburg. 1995;25:5-13.
  57. 57. Castaings L, Marchive C, Meyer C, Krapp A. Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J Exp Bot. 2011;62(4):1391-7. https://doi.org/10.1093/jxb/erq375
  58. 58. Khan W, Hiltz D, Critchley AT, Prithiviraj B. Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol. 2011;23:409-14. https://doi.org/10.1007/s10811-010-9583-x
  59. 59. Turan M, Köse C. Seaweed extracts improve copper uptake of grapevine. Acta Agric Scand Sect B-Soil Plant Sci. 2004;54(4):213-20. https://doi.org/10.1080/09064710410030311
  60. 60. Crouch I, Beckett R, Van Staden J. Effect of seaweed concentrate on the growth and mineral nutrition of nutrient-stressed lettuce. J Appl Phycol. 1990;2:269-72. https://doi.org/10.1007/BF02179784
  61. 61. Dobromilska R, Mikiciuk M, Gubarewicz K. Evaluation of cherry tomato yielding and fruit mineral composition after using of Bio-algeen S-90 preparation. J Elem. 2008;13(4):491-9.
  62. 62. Blunden G. Agricultural uses of seaweeds and seaweed products. In: Guiry MD, Blunden G, editors. Seaweed resources in Europe: uses and potential. Chichester: John Wiley & Sons. 1991:65-81.
  63. 63. Khan A, Munir M, Shaheen T, Tassawar T, Rafiq M, Ali S, et al. Supplemental foliar applied mixture of amino acids and seaweed extract improved vegetative growth, yield and quality of citrus fruit. Sci Hortic. 2022;296:110903. https://doi.org/10.1016/j.scienta.2022.110903
  64. 64. Pavlou A, Efstathiou E, Christodoulou S, Stylianou S, Manganaris GA. The effect of preharvest applications with biostimulants on qualitative properties and postharvest performance of loquat fruit. Acta Hortic. 2022;1344:129-36. https://doi.org/10.17660/ActaHortic.2022.1344.20
  65. 65. Cirillo A, Izzo L, Ciervo A, Ledenko I, Cepparulo M, Piscitelli A, et al. Optimizing apricot yield and quality with biostimulant interventions: A comprehensive analysis. Horticulturae. 2024;10(5):447. https://doi.org/10.3390/horticulturae10050447
  66. 66. Spann TM, Little HA. Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ sweet orange nursery trees. HortScience. 2011;46(4):577-82. https://doi.org/10.21273/HORTSCI.46.4.577
  67. 67. Frioni T, Sabbatini P, Tombesi S, Norrie J, Poni S, Gatti M, et al. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci Hortic. 2018;232:97-106. https://doi.org/10.1016/j.scienta.2017.12.054
  68. 68. Abo-Zaid FS, Zagzog OA, El-Nagar NI, Qaoud E. Effect of sea weed and amino acid on fruiting of some grapevine cultivars. J Product Dev. 2019;24(3):677-703. https://doi.org/10.21608/jpd.2019.48176
  69. 69. Gutiérrez-Gamboa G, Garde-Cerdán T, Souza-Da Costa B, Moreno-Simunovic Y. Strategies for the improvement of fruit set in Vitis vinifera L. cv. ‘Carménère’ through different foliar biostimulants in two different locations. Ciênc E Téc Vitivinícola. 2018;33(2):177-83. https://doi.org/10.1051/ctv/20183302177
  70. 70. Basak A. Effect of preharvest treatment with seaweed products, Kelpak® and Goëmar BM 86®, on fruit quality in apple. Int J Fruit Sci. 2008;8(1-2):1-14. https://doi.org/10.1080/15538360802365251
  71. 71. Belal BES, El-Kenawy MA, El-Mogy S, Mostafa Omar AS. Influence of arbuscular mycorrhizal fungi, seaweed extract and nano-zinc oxide particles on vegetative growth, yield and clusters quality of ‘Early Sweet’ grapevines. Egypt J Hortic. 2023;50(1):1-16. https://doi.org/10.21608/ejoh.2022.167481.1217
  72. 72. Ismaiel HM, Ismail HS. Effect of spraying some amino acids and seaweed extract on the yield and quality fruits of Valencia orange. Egypt J Hortic. 2024;51(2):151-60. https://doi.org/10.21608/ejoh.2023.213742.1248
  73. 73. Monteiro E, Baltazar M, Pereira S, Correia S, Ferreira H, Alves F, et al. Ascophyllum nodosum extract and glycine betaine preharvest application in grapevine: enhancement of berry quality, phytochemical content and antioxidant properties. Antioxidants. 2023;12(10):1835. https://doi.org/10.3390/antiox12101835
  74. 74. Sabry GH, Rizk-Alla MS, Abd El-Wahab M. Influence of effective micro-organisms, seaweed extract and amino acids application on growth, yield and bunch quality of Red globe grapevines. J Plant Prod. 2009;34(6):6617-37. https://doi.org/10.21608/jpp.2009.118638
  75. 75. Popescu GC, Popescu M. Effect of the brown alga Ascophyllum nodosum as biofertilizer on vegetative growth in grapevine (Vitis vinifera L.). Curr Trends Nat Sci. 2014;3:61-7.
  76. 76. Kök D. Effects of foliar seaweed and humic acid treatments on monoterpene profile and biochemical properties of cv. Riesling berry (V. vinifera L.) throughout the maturation period. J Tekirdag Agric Fac. 2016;13(2):67-74.
  77. 77. Masoud AA, Mohamed AK, AbouZaid IA, Abd El-Hakim MH. Effect of foliar application with some natural and chemical compounds on yield of Ruby Seedless grape cultivar. Assiut J Agric Sci. 2023;54(1):198-212. https://doi.org/10.21608/ajas.2023.173439.1198
  78. 78. El-Senosy O. Effect of chitosan and seaweed extracts on fruiting of flame seedless grapevines grown under sandy soil condition. Int J Mod Agric Environ. 2022;2(1):24-32. https://doi.org/10.21608/ijmae.2022.296351
  79. 79. Ahmed A. The application of some biostimulant-based substances to improve the quality and productivity of “Ruby Seedless” grapevines cv. Middle East J Agric Res. 2022;11(1):304-11.
  80. 80. Al-Saif AM, Sas-Paszt L, Awad RM, Mosa WF. Apricot (Prunus armeniaca) performance under foliar application of humic acid, brassinosteroids and seaweed extract. Horticulturae. 2023;9(4):519. https://doi.org/10.3390/horticulturae9040519
  81. 81. Li J, Brecht JK, Kim J, Bailey LS, Kamat MN, Basso KB, et al. Seaweed extract and microbial biostimulants show synergistic effects on improving organic strawberry production. HortScience. 2024;59(8):1114-26. https://doi.org/10.21273/HORTSCI17647-23
  82. 82. Bajpai S, Shukla PS, Asiedu S, Pruski K, Prithiviraj B. A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry. Plant Pathol J. 2019;35(5):406. https://doi.org/10.5423/PPJ.OA.03.2019.0066
  83. 83. Soppelsa S, Kelderer M, Casera C, Bassi M, Robatscher P, Andreotti C. Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Front Plant Sci. 2018;9:1342. https://doi.org/10.3389/fpls.2018.01342
  84. 84. Patel D, Ahlawat T, Pandey A, Jena S. Improved fruit quality in papaya cv. Red Lady though foliar sprays of silicon and seaweed extract. J Pharma Innov. 2021;10(5):1514-6.
  85. 85. Harhash MM, Shama SM, Ghazal KF. Effect of spraying moringa, seaweed extract and potassium on yield and fruit quality of the winter guava ‘Maamoura’ cultivar. J Adv Agric Res. 2019;24(1): 132-45.
  86. 86. Abdel-Sattar M, Al-Obeed RS, Makhasha E, Mostafa LY, Abdelzaher RA, Rihan HZ. Improving mangoes’ productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation. Agric Water Manag. 2024;298:108860. https://doi.org/10.1016/j.agwat.2024.108860
  87. 87. Arioli T, Mattner SW, Hepworth G, McClintock D, McClinock R. Effect of seaweed extract application on wine grape yield in Australia. J Appl Phycol. 2021;33(3):1883-91. https://doi.org/10.1007/s10811-021-02423-1
  88. 88. Ravi I, Kamaraju K, Kumar S, Nori SS. Foliar application of seaweed bio formulation enhances growth and yield of banana cv. Grand Naine (AAA). Indian J Nat Sci. 2018;8:13482-8.
  89. 89. Al-Rawi W, Al-Hadethi M, Abdul-Kareem A. Effect of foliar application of gibberellic acid and seaweed extract spray on growth and leaf mineral content on peach trees. Iraqi J Agric Sci. 2016;47(1). https://doi.org/10.36103/ijas.v47i3.564
  90. 90. Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J Hortic Sci Biotechnol. 2009;84(6):131-7. https://doi.org/10.1080/14620316.2009.11512610
  91. 91. Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci Hortic. 2010;125(3):263-9. https://doi.org/10.1016/j.scienta.2010.03.011
  92. 92. Ashour M, Al-Souti AS, Hassan SM, Ammar GA, Goda AMS, El-Shenody R, et al. Commercial seaweed liquid extract as strawberry biostimulants and bioethanol production. Life. 2022;13(1):85. https://doi.org/10.3390/life13010085

Downloads

Download data is not yet available.