Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Chemical composition, antibacterial and antioxidant potential of Aristolochia indica L. fruit extract

DOI
https://doi.org/10.14719/pst.9430
Submitted
14 May 2025
Published
06-11-2025 — Updated on 18-11-2025
Versions

Abstract

Aristolochia indica L. belongs to family Aristolochiaceae is a traditional medicinal plant in Indian subcontinent used for the treatment of various diseases ailment. In the present study the antibacterial, antioxidant, chemical profiling of methanolic and hexanoic extract of Aristolochia indica fruit (AIF) were investigated. In- vitro antibacterial assay (Disc diffusion and microbroth dilution method) was performed against Salmonella enterica serovar Typhimurium (ATCC 14028), Escherichia coli (ATCC 25922) and Bacillus cereus (ATCC 11778). Methanolic extract showed the MIC value of 1700 µg/mL, 1800 µg/mL, 1000 µg/mL and hexanoic extract were 1900 µg/mL, 1500 µg/mL, 1200 µg/mL respectively against Salmonella enterica serovar Typhimurium (ATCC 14028), Escherichia coli (ATCC 25922) and Bacillus cereus (ATCC 11778). In vitro radical scavenging activity was estimated by DPPH assay; methanolic and hexane extract exhibited showed IC50 value of 430.5 ± 27.36 µg/mL, 559.2± 8.75 µg/mL with respect to control 3.8 ± 0.24 µg/mL(Ascorbic acid). Liquid Chromatography/Mass Spectrometry (LC/MS) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis was done for chemical components characterization. LC/MS revealed the presence of quercetin, kaempferide, linoleic acid, chlorogenic acid and other bioactive compounds. GC-MS chemical composition revealed the presence of maltol (7.42 %), pyranone (9.02 %), o-coumaric acid (4.34 %), α-monoacetin (6.05 %), mome inositol (9.29 %), tetracontane (27.49 %), campesterin (3.56 %), stigmasterol (3.64 %) and β -sitosterol (13.79 %). The phytochemical analysis based on GC-MS and LC-MS confirmed that the absence of aristolochic acid in Aristolochia indica fruit extracts, compound known to have nephrotoxic effect. The findings indicate that the plant’s fruit could be used as a rich source of antioxidants, antibacterial agents and can be used in pharmaceutics and therapeutics industries.

References

  1. 1. Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, et al. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evidence-Based Complement Altern Med. 2013;2013:627375. https://doi.org/10.1155/2013/627375
  2. 2. Alrashidi AA, Noumi E, Snoussi M, De Feo V. Chemical composition, antibacterial and anti-quorum sensing activities of Pimenta dioica L. essential oil and its major compound (eugenol) against foodborne pathogenic bacteria. Plants. 2022;11:540. https://doi.org/10.3390/plants11040540
  3. 3. Vignesh A, Selvakumar S, Vasanth K. Comparative LC-MS analysis of bioactive compounds, antioxidants and antibacterial activity from leaf and callus extracts of Saraca asoca. Phytomed Plus. 2022;2:100167. https://doi.org/10.1016/j.phyplu.2021.100167
  4. 4. Nath S, Ghosh N, Ansari TA, Mundhra A, Patil MT, Mane A, et al. Genetic diversity assessment and biotechnological aspects in Aristolochia spp. Appl Microbiol Biotechnol. 2022;106:6397-412. https://doi.org/10.1007/s00253-022-12152-1
  5. 5. Dey A, De JN. Aristolochia indica L.: A review. Asian J Plant Sci. 2011. https://doi.org/10.3923/ajps.2011.108.116
  6. 6. Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci. 2018;25:361-6. https://doi.org/10.1016/j.sjbs.2017.02.004
  7. 7. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493-6. https://doi.org/10.1093/ajcp/45.4_ts.493
  8. 8. Wayne PA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A7. Clin Lab Stand Inst. 2006.
  9. 9. Brand-Williams W, Cuvelier ME, Berset CL. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  10. 10. Twaij BM, Hasan MN. Bioactive secondary metabolites from plant sources: types, synthesis and their therapeutic uses. Int J Plant Biol. 2022;13:4-14. https://doi.org/10.3390/ijpb13010003
  11. 11. Tamokou JD, Mbaveng AT, Kuete V. Antimicrobial activities of African medicinal spices and vegetables. In: Medicinal spices and vegetables from Africa. Academic Press; 2017:207-37. https://doi.org/10.1016/B978-0-12-809286-6.00008-X
  12. 12. Negi PS, Anandharamakrishnan C, Jayaprakasha GK. Antibacterial activity of Aristolochia bracteata root extracts. J Med Food. 2003;6:401-3. https://doi.org/10.1089/109662003772519994
  13. 13. Navarro-García VM, Luna-Herrera J, Rojas-Bribiesca MG, Álvarez-Fitz P, Ríos MY. Antibacterial activity of Aristolochia brevipes against multidrug-resistant Mycobacterium tuberculosis. Molecules. 2011;16:7357-64. https://doi.org/10.3390/molecules16097357
  14. 14. Venkatadri B, Arunagirinathan N, Rameshkumar MR, Ramesh L, Dhanasezhian A, Agastian P. In vitro antibacterial activity of aqueous and ethanol extracts of Aristolochia indica and Toddalia asiatica against multidrug-resistant bacteria. Indian J Pharm Sci. 2015;77:788. https://doi.org/10.4103/0250-474X.174991
  15. 15. Mariyammal V, Sathiageetha V, Amalraj S, Gurav SS, Amiri-Ardekani E, Jeeva S, et al. Chemical profiling of Aristolochia tagala Cham. leaf extracts by GC-MS analysis and evaluation of its antibacterial activity. J Indian Chem Soc. 2023;100:100807. https://doi.org/10.1016/j.jics.2022.100807
  16. 16. Jagessar RC. Antioxidant properties of plant extracts. Pharma Anal Acta. 2019;1:18-21. https://doi.org/10.33805/2689-9477.105
  17. 17. Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors. 2022;48:611-33. https://doi.org/10.1002/biof.1831
  18. 18. El Omari N, Sayah K, Fettach S, El Blidi O, Bouyahya A, Faouzi ME, et al. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evid Based Complement Altern Med. 2019;2019:7384735. https://doi.org/10.1155/2019/7384735
  19. 19. Bourhia M, Laasri FE, Moussa SI, Ullah R, Bari A, Saeed Ali S, et al. Phytochemistry, antioxidant activity, antiproliferative effect and acute toxicity testing of two Moroccan Aristolochia species. Evid Based Complement Altern Med. 2019;2019:9710876. https://doi.org/10.1155/2019/9710876
  20. 20. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18:96. https://doi.org/10.3390/ijms18010096
  21. 21. Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Navarro-Santos P, Herrera-Bucio R, et al. Biological activities of organic extracts of the genus Aristolochia: a review from 2005 to 2021. Molecules. 2022;27:3937. https://doi.org/10.3390/molecules27123937
  22. 22. Hadem KL, Sen A. Identification of compounds of Aristolochia tagala and apoptotic activity in HeLa cells. Pharmacogn Mag. 2018;14(59s). https://doi.org/10.4103/pm.pm_145_18
  23. 23. Beldi H, Hamida B, Belatar H, Boudechicha A, Bensouici C, Erenler R, et al. Effect of edapho-climatic factors on the content, quality and efficiency of secondary metabolites in the type species Aristolochia longa L. Preprint. 2023. https://doi.org/10.21203/rs.3.rs-3006292/v1
  24. 24. Sergeant S, Rahbar E, Chilton FH. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur J Pharmacol. 2016;785:77-86. https://doi.org/10.1016/j.ejphar.2016.04.020
  25. 25. Yang X, Li Y, Li Y, Ye D, Yuan L, Sun Y, et al. Solid matrix-supported supercritical CO2 enhances extraction of γ-linolenic acid from the cyanobacterium Arthrospira (Spirulina) platensis and bioactivity evaluation of the molecule in zebrafish. Mar Drugs. 2019;17:203. https://doi.org/10.3390/md17040203
  26. 26. Ahmed SA, Sarma P, Barge SR, Swargiary D, Devi GS, Borah JC. Xanthosine, a purine glycoside mediates hepatic glucose homeostasis through inhibition of gluconeogenesis and activation of glycogenesis via regulating the AMPK/FoxO1/AKT/GSK3β signaling cascade. Chem Biol Interact. 2023;371:110347. https://doi.org/10.1016/j.cbi.2023.110347
  27. 27. Wu C, Yan J, Li W. Acacetin as a potential protective compound against cardiovascular diseases. Evid Based Complement Altern Med. 2022;2022:6265198. https://doi.org/10.1155/2022/6265198
  28. 28. Semwal RB, Semwal DK, Combrinck S, Trill J, Gibbons S, Viljoen A. Acacetin—a simple flavone exhibiting diverse pharmacological activities. Phytochem Lett. 2019;32:56-65. https://doi.org/10.1016/j.phytol.2019.04.021
  29. 29. Li S, Lv Q, Sun X, Tang T, Deng X, Yin Y, et al. Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin. J Pharm Pharmacol. 2020;72:1092-100. https://doi.org/10.1111/jphp.13279
  30. 30. Bi C, Dong X, Zhong X, Cai H, Wang D, Wang L. Acacetin protects mice from Staphylococcus aureus bloodstream infection by inhibiting the activity of sortase A. Molecules. 2016;21:1285. https://doi.org/10.3390/molecules21101285
  31. 31. Li S, Xu X, Wei L, Wang L, Lv Q. Acacetin alleviates Listeria monocytogenes virulence both in vitro and in vivo via inhibition of listeriolysin O. Foodborne Pathog Dis. 2022;19:115-25. https://doi.org/10.1089/fpd.2021.0021
  32. 32. Teffo LS, Aderogba MA, Eloff JN. Antibacterial and antioxidant activities of four kaempferol methyl ethers isolated from Dodonaea viscosa Jacq. var. angustifolia leaf extracts. S Afr J Bot. 2010;76:25-9. https://doi.org/10.1016/j.sajb.2009.06.010
  33. 33. Jaisinghani RN. Antibacterial properties of quercetin. Microbiol Res. 2017;8:6877. https://doi.org/10.4081/mr.2017.6877
  34. 34. Qi W, Qi W, Xiong D, Long M. Quercetin: its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules. 2022;27:6545. https://doi.org/10.3390/molecules27196545
  35. 35. Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv Pharmacol. 2020;87:71-88. https://doi.org/10.1016/bs.apha.2019.12.002
  36. 36. Bagdas D, Gul Z, Meade JA, Cam B, Cinkilic N, Gurun MS. Pharmacologic overview of chlorogenic acid and its metabolites in chronic pain and inflammation. Curr Neuropharmacol. 2020;18:216-28. https://doi.org/10.2174/1570159X17666191021111809
  37. 37. Habartova K, Havelek R, Seifrtova M, Kralovec K, Cahlikova L, Chlebek J, et al. Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and culminates in apoptotic death of cancer cells. Sci Rep. 2018;8:4829. https://doi.org/10.1038/s41598-018-22862-0
  38. 38. Lim H, Kim HJ, Jeong H, Park HR. Anti-inflammatory effects of 1-isothiocyanato-7-(methylsulfonyl) heptane by suppressing the NFκ-B signaling pathway. Eur J Inflamm. 2017;15:57-65. https://doi.org/10.1177/1721727X17719600
  39. 39. Kumar MH, Prabhu K, Rao MR, Sundram RL, Shil S, Kumar MS, et al. The gas chromatography–mass spectrometry study of one medicinal plant, Aristolochia indica. Drug Invent Today. 2019;12(12). https://doi.org/10.5958/0974-360X.2019.00101.X
  40. 40. Gobbo-Neto L, Lopes NP. Medicinal plants: factors of influence on the content of secondary metabolites. Quim Nova. 2007;30:374-81. https://doi.org/10.1590/S0100-40422007000200026
  41. 41. Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FF, Zavadil J. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat Rev Cancer. 2022;22:576-91. https://doi.org/10.1038/s41568-022-00494-x
  42. 42. Hashimoto K, Higuchi M, Makino B, Sakakibara I, Kubo M, Komatsu Y, et al. Quantitative analysis of aristolochic acids, toxic compounds, contained in some medicinal plants. J Ethnopharmacol. 1999;64:185-9. https://doi.org/10.1016/S0378-8741(98)00123-8
  43. 43. Heinrich M, Chan J, Wanke S, Neinhuis C, Simmonds MS. Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2—a global assessment based on bibliographic sources. J Ethnopharmacol. 2009;125:108-44. https://doi.org/10.1016/j.jep.2009.05.028

Downloads

Download data is not yet available.