Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Genetic approaches for trait improvement in sesame: Progress and prospects

DOI
https://doi.org/10.14719/pst.9434
Submitted
14 May 2025
Published
07-10-2025

Abstract

Sesame (Sesamum indicum L.) is the most ancient oilseed crops cultivated by humans, widely known as the ’queen of oilseeds’ due to its high oil content, nutritional richness and health-promoting properties. The global demand for sesame has risen significantly in recent years, largely driven by its excellent oil quality, high protein levels, antioxidant compounds such as sesamin and sesamolin and its remarkable adaptability to a wide range of agro-climatic and soil conditions. Despite being widely grown and self-sustaining in terms of acreage, sesame continues to exhibit low average productivity. This is primarily due to limited genetic improvement, environmental stress susceptibility and poor adaptation to diverse agro-ecological regions. To overcome these challenges, genetic enhancement of sesame is essential. Recent advancements in molecular biology and genomics have opened new avenues for sesame improvement through the use of molecular markers, QTL mapping, mutation breeding and genome-assisted selection. This article aims to explore the genetic approaches currently employed in sesame crop improvement. It highlights the evolutionary history of sesame research, development and utilization of genetic resources, progress in molecular breeding and the challenges faced by breeders. Emphasis is also placed on prospects and the integration of modern biotechnological tools to enhance sesame productivity and resilience.

References

  1. 1. Wei P, Zhao F, Wang Z, Wang Q, Chai X, Hou G, et al. Sesame (Sesamum indicum L.): A comprehensive review of nutritional value, phytochemical composition, health benefits, development of food, and industrial applications. Nutrients. 2022;14(19):4079. https://doi.org/10.3390/nu14194079
  2. 2. Bedigian D. Characterisation of sesame (Sesamum indicum L.) germplasm: A critique. Genetic Resour Crop Evol. 2010;57(5):641–47. https://doi.org/10.1007/s10722-010-9552-x
  3. 3. Miao H, Zhang H, Kole C, editors. The sesame genome. Cham: Springer; 2021. https://doi.org/10.1007/978-3-319-98098-0
  4. 4. Teklu DH, Shimelis H, Tesfaye A, Mashilo J. Genetic diversity and association of yield-related traits in sesame. Plant Breed. 2021;140(2):331–41. https://doi.org/10.1111/pbr.12911
  5. 5. Kamal-Eldin A. Chemical studies on the lignans and other minor constituents of sesame seed oil. Abingdon, UK: CRC Press, Taylor and Francis Group; 2010.
  6. 6. Wan Y, Zhou Q, Zhao M, Hou T. By-products of sesame oil extraction: Composition, function, and comprehensive utilization. Foods. 2023;12(12):2383. https://doi.org/10.3390/foods12122383
  7. 7. Myint D, Gilani SA, Kawase M, Watanabe KN. Sustainable sesame (Sesamum indicum L.) production through im-proved technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability. 2020;12(9):3515. https://doi.org/10.3390/su12093515
  8. 8. Mili A, Das S, Nandakumar K, Lobo R. A comprehensive review on Sesamum indicum L.: Botanical, ethnopharmacological, phytochemical, and pharmacological aspects. J Ethnopharmacol. 2021;281:114503. https://doi.org/10.1016/j.jep.2021.114503
  9. 9. Teklu DH, Shimelis H, Abady S. Genetic improvement in sesame (Sesamum indicum L.): Progress and outlook: A review. Agronomy. 2022;12(9):2144. https://doi.org/10.3390/agronomy12092144
  10. 10. Petroski W, Minich DM. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients. 2020;12(10):2929. https://doi.org/10.3390/nu12102929
  11. 11. Gebregergis Z, Baraki F, Fiseseha D. Effects of environmental factors and storage periods on sesame seed quality and longevity. Agric Biosci. 2024;5(1):1–11. https://doi.org/10.1186/s43170-024-00247-w
  12. 12. Tripathy SK, Kar J, Sahu D. Advances in sesame (Sesamum indicum L.) breeding. In: Al-Khayri J, Jain S, Johnson D, editors. Advances in plant breeding strategies: Industrial and food crops. Cham: Springer; 2019. p. 577–635. https://doi.org/10.1007/978-3-030-23265-8_15
  13. 13. Dos Santos AR, da Rocha GMG, Machado AP, Fernandes-Junior PI, Arriel NHC, Gondim TM de S, et al. Molecular and biochemical responses of sesame (Sesame indicum L.) to rhizobacteria inoculation under water deficit. Front Plant Sci. 2024;14:1324643. https://doi.org/10.3389/fpls.2023.1324643
  14. 14. Sreepriya S, Girija T. Assessing the role of ameliorants based on physiological traits in sesame under waterlogged condition. J Crop Weed. 2020;16(2):46–51. https://doi.org/10.22271/09746315.2020.v16.i2.1313
  15. 15. Nayar NM, Mehra KL. Sesame: Its uses, botany, cytogenetics, and origin. Econ Bot. 1970;20–31. https://doi.org/10.1007/BF02860629
  16. 16. Weldemichael MY, Gebremedhn HM. Research advances and prospects of molecular markers in sesame: A review. Plant Biotechnol Rep. 2023;17(5):585–603. https://doi.org/10.1007/s11816-023-00853-6
  17. 17. Hiremath SC, Patil CG. Genome relations among octaploid species of Sesamum L. (Pedaliaceae). Cytologia. 2002;67(4):403–409. https://doi.org/10.1508/cytologia.67.403
  18. 18. Kawase M. Genetic relationships of the ruderal weed type and the associated weed type of Sesamum mulayanum NAIR distributed in the Indian subcontinent to cultivated sesame, S. indicum L. Jpn J Trop Agric. 2000;44(2):115–22. https://doi.org/10.11248/jsta1957.44.115
  19. 19. Nanthakumar NN, Fusunyan RD, Sanderson I, Walker WA. Inflammation in the developing human intestine: A possible pathophysiologic contribution to necrotizing enterocolitis. Proc Natl Acad Sci USA. 2000;97(11):6043–48. https://doi.org/10.1073/pnas.97.11.6043
  20. 20. Bedigian D. Systematics and evolution in Sesamum L. (Pedaliaceae), part 1: Evidence regarding the origin of sesame and its closest relatives. Webbia. 2015;70(1):1–42. https://doi.org/10.1080/00837792.2014.968457
  21. 21. Sruthi SR, Kalaiyarasi R, Sasikala R, Sudha M. Pollen pistil interaction in the interspecific cross of Sesamum indicum and S. radiatum. Electron J Plant Breed. 2022;13(4):1288–96. https://doi.org/10.37992/2022.1304.162
  22. 22. Quazi S, Golani T, Capuzzo AM. Germplasm conservation. In: Kumar S, editor. Endangered Plants. Intech Open; 2021. p. 180. https://doi.org/10.5772/intechopen.96184
  23. 23. Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, et al. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 2013;13:141. https://doi.org/10.1186/1471-2229-13-141
  24. 24. Park JH, Suresh S, Raveendar S, Baek HJ, Kim CK, Lee S, et al. Development and evaluation of core collection using qualitative and quantitative trait descriptor in sesame (Sesamum indicum L.) germplasm. Korean J Crop Sci. 2015;60(1):75–84. http://dx.doi.org/10.7740/kjcs.2014.60.1
  25. 25. Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, et al. Genetic discovery for oil production and quality in sesame. Nat Commun. 2015;6:8609. https://doi.org/10.1038/ncomms9609
  26. 26. Pathak N, Rai AK, Kumari R, Thapa A, Bhat KV. Sesame crop: An underexploited oilseed holds tremendous potential for enhanced food value. Agric Sci. 2014;5(6):472–81. https://doi.org/10.4236/as.2014.56054
  27. 27. Najeeb U, Mirza MY, Jilani G, Mubashir AK, Zhou WJ. Sesame. In: Gupta S, editor. Technological Innovations in Ma-jor World Oil Crops. New York: Springer; 2012. p. 131–45. https://doi.org/10.1007/978-1-4614-0356-2_5
  28. 28. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol. 2014;15:R39. https://doi.org/10.1186/gb-2014-15-2-r39
  29. 29. Abate M. Genotype × environment analysis for seed yield and its components in sesame (Sesamum indicum L.) evaluated across diverse agro-ecologies of the Awash Valleys in Ethiopia. J Adv Stud Agric Biol Environ Sci. 2015;2(4):1–14. https://doi.org/10.9734/AJEA/2015/18482
  30. 30. Uncu AÖ, Gultekin V, Allmer J, Frary A, Doganlar S. Genomic simple sequence repeat markers reveal patterns of genetic relatedness and diversity in sesame. Plant Genome. 2015;8(2):0087. https://doi.org/10.3835/plantgenome2014.11.0087
  31. 31. Dossa K, Diouf D, Cissé N. Genome wide investigation of Hsf genes in Sesamum indicum reveals their segmental duplication expansion and their active role in drought stress response. Front Plant Sci. 2016;7:1522. https://doi.org/10.3389/fpls.2016.01522
  32. 32. Pathak K, Rahman SW, Bhagawati S, Gogoi B. Sesame (Sesamum indicum L.), an underexploited oil seed crop: Current status, features and importance A review. Agric Rev. 2017;38(3):8982. https://doi.org/10.18805/ag.v38i03.8982
  33. 33. Mondal N, Bhat KV, Srivastava PS, Sen SK. Effects of domestication bottleneck and selection on fatty acid desaturases in Indian sesame germplasm. Plant Genet Resour. 2016;14(2):81 90. https://doi.org/10.1017/S1479262115000106
  34. 34. Venkataramana Bhat K, Babrekar PP, Lakhanpaul S. Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica. 1999;110:21-34. https://doi.org/10.1023/A:1003724732323
  35. 35. Ercan AG, Taskin M, Turgut K. Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol. 2004;51:599-607. https://doi.org/10.1023/B:GRES.0000024651.45623.f2
  36. 36. Salazar B, Laurentín H, Dávila M, Castillo MA. Reliability of the RAPD technique for germplasm analysis of sesame (Sesamum indicum L) from Venezuela. Interciencia. 2006;31(6):456-60.
  37. 37. Pham TD. Analyses of genetic diversity and desirable traits in sesame (Sesamum indicum L., Pedaliaceae): Implication for breeding and conservation. Swedish University of Agricultural Sciences; 2011.
  38. 38. Akbar F, Rabbani MA, Masood MS, Shinwari ZK. Genetic diversity of sesame (Sesamum indicum L.) germplasm from Pakistan using RAPD markers. Pak J Bot. 2011;43(4):2153-60.
  39. 39. Tabatabaei I, Pazouki L, Bihamta MR, Mansoori S, Javaran MJ, Niinemets U. Genetic variation among Iranian sesame (Sesamum indicum L.) accessions vis-a-vis exotic genotypes on the basis of morpho-physiological traits and RAPD markers. Aust J Crop Sci. 2011;5(11):1396-407.
  40. 40. Dar AA, Mudigunda S, Mittal PK, Arumugam N. Comparative assessment of genetic diversity in Sesamum indicum L. using RAPD and SSR markers. 3 Biotech. 2017;7:1-12. https://doi.org/10.1007/s13205-016-0578-4
  41. 41. Anandan R, Deenathayalan T, Prakash M, Sunilkumar B, Narayanan GS. Assessment of genetic diversity among sesame (Sesamum indicum L.) germplasm as revealed by RAPD and SSR markers. Indian J Biochem Biophys. 2018;55(2):143-50.
  42. 42. Laurentin H, Karlovsky P. AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: Identification, genetic rela-tionship and comparison of AFLP informativeness parameters. Genet Resour Crop Evol. 2007;54:1437 46. https://doi.org/10.1007/s10722-006-9128-y
  43. 43. Laurentin H, Ratzinger A, Karlovsky P. Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.). BMC Genomics. 2008;9:1-11. https://doi.org/10.1186/1471-2164-9-250
  44. 44. Adéoti K, Rival A, Dansi A, Santoni S, Brown S, Beule T, et al. Genetic characterization of two traditional leafy vege-tables (Sesamum radiatum Thonn. ex Hornem and Ceratotheca sesamoides Endl.) of Benin, using flow cytometry and amplified fragment length polymorphism (AFLP) markers. Afr J Biotechnol. 2011;10(65):14264-75. https://doi.org/10.5897/AJB11.1176
  45. 45. Wang M, Huang J, Liu S, Liu X, Li R, Luo J, et al. Improved assembly and annotation of the sesame genome. DNA Res. 2022;29(6):dsac041. https://doi.org/10.1093/dnares/dsac041
  46. 46. Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, et al. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq technology. BMC Plant Biol. 2014;14(1):274. https://doi.org/10.1186/s12870-014-0274-7
  47. 47. Wei X, Wang L, Zhang Y, Qi X, Wang X, Ding X, et al. Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules. 2014;19(4):5150-62. https://doi.org/10.3390/molecules19045150
  48. 48. Asekova S, Kulkarni K, Oh KW, Lee MH, Oh E, Kim JI, et al. Analysis of molecular variance and population structure of sesame (Sesamum indicum L.) genotypes using simple sequence repeat markers. Plant Breed Biotechnol. 2018;6(4):321-36. https://doi.org/10.9787/PBB.2018.6.4.321
  49. 49. Adu-Gyamfi R, Prempeh R, Zakaria I. Diversity assessment of some sesame (Sesamum indicum L.) genotypes cultivated in Northern Ghana using morphological and simple sequence repeat (SSR) markers. Adv Agric. 2019;2019:6067891. https://doi.org/10.1155/2019/6067891
  50. 50. de Sousa Araújo E, Arriel NHC, dos Santos RC, de Lima LM. Assessment of genetic variability in sesame accessions using SSR markers and morpho-agronomic traits. Aust J Crop Sci. 2019;13(1):45-54. https://doi.org/10.21475/ajcs.19.13.01.p1157
  51. 51. Pandey SK, Das A, Rai P, Dasgupta T. Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. Physiol Mol Biol Plants. 2015;21:519-29. https://doi.org/10.1007/s12298-015-0322-2
  52. 52. Stavridou E, Lagiotis G, Kalaitzidou P, Grigoriadis I, Bosmali I, Tsaliki E, et al. Characterization of the genetic diversity present in a diverse sesame landrace collection based on phenotypic traits and EST-SSR markers coupled with an HRM analysis. Plants. 2021;10(4):656. https://doi.org/10.3390/plants10040656
  53. 53. Oduoye OT, Oluwasanya OA, Arikawe OO, Sunday A, Ayekun OA, Oyenpemi OS, et al. Genetic variation via SSR polymorphic information content and ecological distribution of Nigerian sesame. Afr J Biotechnol. 2020;19(4):165-70. https://doi.org/10.5897/AJB2019.16980
  54. 54. Woldesenbet DT, Tesfaye K, Bekele E. Genetic diversity of sesame germplasm collection (Sesamum indicum L.): Implication for conservation, improvement and use. Int J Biotech Mol Bio Res. 2015;6(2):7-18. https://doi.org/10.5897/IJBMBR2014.0219
  55. 55. Gebru MM, Yifter M, Kiros M, Mesfin M, Tadesse K. Genetic characterization of sesame (Sesamum indicum L) cultivars in Ethiopia using ISSR markers. J Drylands. 2019;9(1):969-76.
  56. 56. El Harfi M, Charafi J, Houmanat K, Hanine H, Nabloussi A. Assessment of genetic diversity in Moroccan sesame (Sesamum indicum) using ISSR molecular markers. Oilseeds & Fat Crops and Lipids. 2021;28:3. https://doi.org/10.1051/ocl/2020072
  57. 57. Cui C, Mei H, Liu Y, Zhang H, Zheng Y. Genetic diversity, population structure, and linkage disequilibrium of an association mapping panel revealed by genome wide SNP markers in sesame. Front Plant Sci. 2017;8:1189. https://doi.org/10.3389/fpls.2017.01189
  58. 58. Basak M, Uzun B, Yol E. Genetic diversity and population structure of the Mediterranean sesame core collection with use of genome wide SNPs developed by double digest RAD Seq. PLoS One. 2019;14(10):e0223757. https://doi.org/10.1371/journal.pone.0223757
  59. 59. Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK. Super pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 2020;25(2):148-58. https://doi.org/10.1016/j.tplants.2019.10.012
  60. 60. Wei W, Zhang Y, Wang L, Li D, Gao Y, Zhang X. Genetic diversity, population structure, and association mapping of 10 agronomic traits in sesame. Crop Sci. 2016;56(1):331-43. https://doi.org/10.2135/cropsci2015.03.0153
  61. 61. Yu J, Ke T, Tehrim S, Sun F, Liao B, Hua W. PTGBase: An integrated database to study tandem duplicated genes in plants. Database. 2015;2015:bav017. https://doi.org/10.1093/database/bav017
  62. 62. Wei X, Gong H, Yu J, Liu P, Wang L, Zhang Y, Zhang X. Sesame FG: An integrated database for the functional ge-nomics of sesame. Scientific Reports. 2017;7(1):2342. https://doi.org/10.1038/s41598-017-02586-3
  63. 63. Furat S, Uzun B. The use of agro morphological characters for the assessment of genetic diversity in sesame (‘Sesamum indicum’ L). Plant Omics. 2010;3(3):85-91.
  64. 64. Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet. 2016;7:221. https://doi.org/10.3389/fgene.2016.00221
  65. 65. Aye M, Htwe NM. Trait association and path coefficient analysis for yield traits in Myanmar sesame (Sesamum indicum L.) germplasm. J Exp Agric Int. 2019;41(3):1-10. https://doi.org/10.9734/jeai/2019/v41i330402
  66. 66. Zanten LV. Sesame improvement by induced mutations: Results of the co ordinated research project and recommendation for future studies. (No. IAEA TECDOC 1195, p. 1 12). 2001.
  67. 67. Hoballah AA. Selection and agronomic evaluation of induced mutant lines of sesame. 2001.
  68. 68. Çağırgan Mİ. Selection and morphological characterization of induced determinate mutants in sesame. Field Crops Res. 2006;96(1):19-24. https://doi.org/10.1016/j.fcr.2005.06.010
  69. 69. Wongyai W, Saengkaewsook W, Veerawudh J. Sesame mutation induction: Improvement of non shattering capsule by using gamma rays and EMS. 2001.
  70. 70. DG L. Genetics of sesame; open sesame and mottled leaf. The Journal of Heredity. 1946;37:149 52. https://doi.org/10.1093/oxfordjournals.jhered.a105603
  71. 71. MutantVariety Database (MVD). The Joint FAO/IAEA Mutant Variety Database. 2022. Available online: https://mvd.iaea.org/
  72. 72. Zhang L, Shuai Q, Li P, Zhang QI, Ma F, Zhang W, et al. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chem. 2016;192:60-66. https://doi.org/10.1016/j.foodchem.2015.06.096
  73. 73. Wang L, Zhang Y, Li P, Wang X, Zhang W, Wei W, et al. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China. J Am Oil Chem Soc. 2012;89(6):1011-20. https://doi.org/10.1007/s11746-011-2005-7
  74. 74. Biabani AR, Pakniyat H. Evaluation of seed yield related characters in sesame (Sesamum indicum L.) using factor and path analysis. Pak J Biol Sci. 2008;11(8):1157-60. https://doi.org/10.3923/pjbs.2008.1157.1160
  75. 75. Uzun B, Yol E, Furat Ş, TopakcI M, Canakci M, Karayel D. The effects of different tillage methods on the post wheat second crop sesame: Seed yield, energy budget, and economic return. Turkish J Agric For. 2012;36(4):399-407. https://doi.org/10.3906/tar-1011-1505
  76. 76. Mei H, Liu Y, Du Z, Wu K, Cui C, Jiang X, et al. High-density genetic map construction and gene mapping of basal branching habit and flowers per leaf axil in sesame. Front Plant Sci. 2017;8:636. https://doi.org/10.3389/fpls.2017.00636
  77. 77. Liu H, Zhou X, Wu K, Yang M, Zhao Y. Inheritance and molecular mapping of a novel dominant genic male-sterile gene in Sesamum indicum L. Mol Breed. 2015;35:1-14. https://doi.org/10.1007/s11032-015-0189-5
  78. 78. Yan-xin Z, Lin-Hai W, Li DH, Gao Y, Lu H, Xiu-rong Z. Mapping of sesame waterlogging tolerance QTL and identifi-cation of excellent waterlogging tolerant germplasm. Scientia Agricultura Sinica. 2014;47(3):422-30. https://doi.org/10.3864/j.issn.0578-1752.2014.03.002
  79. 79. Wang X, Mao W, Wang Y, Lou H, Guan P, Chen Y, et al. Breeding design in wheat by combining the QTL information in a GWAS panel with a general genetic map and computer simulation. Crop J. 2023;11(6):1816-27. https://doi.org/10.1016/j.cj.2023.10.001
  80. 80. Chowdhury S, Basu A, Ray Chaudhuri T, Kundu S. In-vitro characterization of the behaviour of Macrophomina phaseolina (Tassi) Goid at the rhizosphere and during early infection of roots of resistant and susceptible varieties of sesame. Eur J Plant Pathol. 2014;138:361-75. https://doi.org/10.1007/s10658-013-0335-z
  81. 81. Chowdhury S, Basu A, Kundu S. Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci. 2017;8:410. https://doi.org/10.3389/fpls.2017.00410
  82. 82. You J, Li D, Yang L, Dossou SSK, Zhou R, Zhang Y, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in sesame (Sesamum indicum L.). Front Plant Sci. 2022;13:935825. https://doi.org/10.3389/fpls.2022.935825

Downloads

Download data is not yet available.