Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Integrative palynological and molecular characterization of Pulicaria crispa populations from the central region of Saudi Arabia

DOI
https://doi.org/10.14719/pst.9466
Submitted
16 May 2025
Published
04-10-2025 — Updated on 17-10-2025
Versions

Abstract

Pulicaria crispa, a xerophytic species of the family Asteraceae, demonstrates significant ecological adaptability across arid regions of Saudi Arabia. This study aimed to investigate the genetic and palynological diversity among four geographically distinct populations of P. crispa using a combined approach of morphological, palynological and molecular analyses. Pollen grains were extracted from mature anthers, acetalized and examined under light and scanning electron microscopes to measure key characteristics such as polar and equatorial diameter, aperture type and exine ornamentation. Additionally, genomic DNA was isolated from fresh leaf tissues and amplified using ISSR and ISJ molecular markers to assess genetic variation. A total of 134 ISSR bands and 112 ISJ bands were generated, with ISSR markers showing higher polymorphism (79.4 %) than ISJ (62.5 %). Morphological and palynological features displayed significant inter-population variability. Mantel tests revealed a moderate correlation (r = 0.52, p < 0.05) between molecular and morphological distances, indicating potential adaptive divergence. The King Abdulaziz Royal Reserve population exhibited the highest genetic and palynological diversity. These findings underscore the value of using integrated molecular and palynological tools to assess biodiversity in desert-adapted plant species, highlighting the evolutionary significance of environmental pressures shaping P. crispa populations. This work contributes to the ecological and conservation understanding of xerophytic flora in the Arabian Peninsula.

References

  1. 1. Al Zain MN, Albarakaty FM, El-Desoukey RMA. An ethnobotanical, phytochemical analysis, antimicrobial and biological studies of Pulicaria crispa as a graze promising shrub. Life (Basel). 2023;13(11):2197. https://doi.org/10.3390/life13112197
  2. 2. Halbritter H, Ulrich S, Grímsson F, Weber M, Zetter R, Hesse M, et al. Illustrated pollen terminology. Springer; 2018. https://doi.org/10.1007/978-3-319-71365-6
  3. 3. Coutinho AP, Aguiar CF, Bandeira DS, et al. Comparative pollen morphology of the Iberian species of Pulicaria (Asteraceae, Inuleae, Inulinae) and its taxonomic significance. Plant Syst Evol. 2011;297:171-83. https://doi.org/10.1007/s00606-011-0505-4
  4. 4. Poczai P, Varga I, Laos M, et al. Advances in plant gene-targeted and functional markers: a review. Plant Methods. 2013;9(1):6. https://doi.org/10.1186/1746-4811-9-6
  5. 5. Nair A. Assessment of genetic diversity in Limnophila aquatica (Roxb.) Alston using random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) markers [PhD thesis]. Ernakulam: St Teresa’s College; 2023.
  6. 6. Erdtman G. Handbook of palynology: An introduction to the study of pollen grains and spores. Hafner Publishing Co.; 1969.
  7. 7. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11-15.
  8. 8. Sawicki J, Szczecińska M. Semi-specific intron-exon splice junction markers in bryophyte studies. Biodiv Res Conserv. 2007;(5-8):25-30. https://doi.org/10.14746/biorc.2007.5-8.5
  9. 9. Alrasheed MM, Alwahibi MS, Alnemar SK. Morphological characterization of Pulicaria crispa (Asteraceae) achenes of four populations distributed in the Central Region of Saudi Arabia. Int J Sci Res. 2023;12(4):394-97. https://doi.org/10.21275/SR23405163102
  10. 10. Müller C, Hethke M, Riedel F, Helle G. Inter- and intra-tree variability of carbon and oxygen stable isotope ratios of modern pollen from nine European tree species. PLoS One. 2020;15(6):e0234315. https://doi.org/10.1371/journal.pone.0234315
  11. 11. Welles SR, Funk JL. Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. Ann Bot. 2021;127(4):461-71. https://doi.org/10.1093/aob/mcaa173
  12. 12. Al Shaye NA, Masrahi YS, Thomas J. Ecological significance of floristic composition and life forms of Riyadh region, Central Saudi Arabia. Saudi J Biol Sci. 2020;27(1):35-40. https://doi.org/10.1016/j.sjbs.2019.04.009
  13. 13. Zhao GH, Li J, Zou FC, et al. ISSR, an effective molecular approach for studying genetic variability among Schistosoma japonicum isolates from different provinces in mainland China. Infect Genet Evol. 2009;9(5):903-07. https://doi.org/10.1016/j.meegid.2009.06.006
  14. 14. Verma KS, Ul Haq S, Kachhwaha S, Kothari SL. RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad. 3 Biotech. 2017;7(5):288. https://doi.org/10.1007/s13205-017-0918-z
  15. 15. Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome. 2001;44(1):111-19. https://doi.org/10.1139/g00-097
  16. 16. Rajkumari K, Sharma SK, Rao SR. Assaying polymorphism by intron targeted intron-exon specific junction (ISJ) DNA marker for genetic diversity diagnostics of the Cucumis L. taxa. Nucleus. 2013;56:15-21. https://doi.org/10.1007/s13237-013-0080-x
  17. 17. Xu S, Wang J, Guo Z, He Z, Shi S. Genomic convergence in the adaptation to extreme environments. Plant Commun. 2020;1(6):100103. https://doi.org/10.1016/j.xplc.2020.100117
  18. 18. Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics and evolutionary aspects of desert plants. J Adv Res. 2024;58:63-78. https://doi.org/10.1016/j.jare.2023.04.019
  19. 19. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973;70(12):3321-23. https://doi.org/10.1073/pnas.70.12.3321
  20. 20. Juárez-Miranda AI, Cornejo-Romero A, Vargas-Mendoza CF. Population expansion and genetic structure in Cephalocereus nizandensis (Cactaceae), a microendemic cactus of rocky outcrops of the Tehuantepec basin, Mexico. Plant Ecol Evol. 2021;154(2):217-30. https://doi.org/10.5091/plecevo.2021.1773
  21. 21. Han B, Cui L, Jin M, Dong H. Ecological adaptation strategies of desert plants in the farming-pastoral zone of Northern Tarim Basin. Sustainability. 2025;17(7):2899. https://doi.org/10.3390/su17072899
  22. 22. Mao H, Jiang C, Tang C, et al. Wheat adaptation to environmental stresses under climate change: molecular basis and genetic improvement. Mol Plant. 2023;16(10):1564-89. https://doi.org/10.1016/j.molp.2023.09.001
  23. 23. Kardos M. Conservation genetics. Curr Biol. 2021;31(19):R1185-91. https://pubmed.ncbi.nlm.nih.gov/37671604/
  24. 24. Hunter P. Genetics against extinction: new conservation strategies consider genetic diversity and habitat loss. EMBO Rep. 2023;24(7):e57521. https://doi.org/10.15252/embr.202357521
  25. 25. Carrasco-Puga G, Díaz FP, Soto DC, et al. Revealing hidden plant diversity in arid environments. Ecography. 2021;44(1):98-111. https://doi.org/10.1111/ecog.05100
  26. 26. Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, et al. Genetic considerations in ecosystem restoration using native tree species In: Loo J, Souvannavong O, Dawson I, editors. Forest Ecology and Management. 2014;333:66-75 https://doi.org/10.1016/j.foreco.2014.07.015

Downloads

Download data is not yet available.