Research Articles
Early Access
Combination of NAA and BAP significantly enhances plantlet regeneration of Saccharum officinarum L. cv. PSJK 922
National Research and Innovation Agency, Research Organization for Agriculture and Food, Bogor 16915, West Java, Indonesia
National Research and Innovation Agency, Research Organization for Agriculture and Food, Bogor 16915, West Java, Indonesia
Abstract
This study aimed to optimize callus induction and plantlet regeneration protocols for the commercial sugarcane cultivar PSJK 922. Callus induction from spindle leaf roll segments was performed using Murashige and Skoog (MS) medium supplemented with 2,4-D at concentrations of 0, 1, 2, 3 and 4 mg/L. Data were recorded on Callus Induction Frequency (CIF) and Callus Fresh Weight (CFW). The best callus with a friable texture and creamy white colour, was subcultured and transferred to regeneration media containing 25 combinations of NAA and BAP, ranging from 0 to 2 mg/L. Plantlet regeneration was evaluated over 14 weeks under controlled conditions. The parameters included plantlet regeneration, number of shoots, number of roots, shoot length, root length and Plantlet Vigour Index (PVI). The results showed that 2,4-D at concentrations of 3 and 4 mg/L were most effective for generating morphogenic callus with high CIF (83.33 %) and CFW (0.3834-0.4541 g). The statistical analysis revealed a significant effect of NAA and BAP combinations on plantlet regeneration (77.33 %, p < 0.047) observed from callus induced with 3 mg/L. In particular, the optimal regeneration medium was found to be 0.5 mg/L NAA and 1.5 mg/L BAP, when using callus induced by 3 mg/L 2,4-D, leading to higher shoot elongation (4.74 cm ± 0.32) compared to most other treatments. The combination exhibited the highest PVI (around 456), which indicates healthy plantlet development and overall quality. Thus, these findings can help optimize tissue culture protocols for elite sugarcane as well as large-scale propagation for accelerating germplasm multiplication and serving as a foundation for genetic transformation of elite lines.
References
- 1. Anitha J, Sherin P, Ranjani R, Selvakumar R. Recent advances in sugarcane-mediated nanocomposites and its applications. In: Suresha GS, Krishnappa G, Palanichamy M, Mahadeva Swamy HK, Kuppusamy H, Govindakurup H, editors. Value Addit Prod Diversif Sugarcane. Singapore: Springer; 2024. p. 213-26. https://doi.org/10.1007/978-981-97-7228-5_10
- 2. Akram MS, Alvi AK, Iqbal J. Enhanced in vitro regeneration in sugarcane (Saccharum officinarum L.) by use of alternate high-low picloram doses and thidiazuron supplementation. Cytol Genet. 2021;55(6):566-75. https://doi.org/10.3103/S0095452721060025
- 3. Migneault A, Sandhu H, McCord P, Zhao D, Erickson J. Albinism in sugarcane: significance, research gaps and potential future research developments. Sugar Tech. 2019;21(3):536-41. https://doi.org/10.1007/s12355-018-0668-1
- 4. Purankar MV, Nikam AA, Devarumath RM, Penna S. Radiation induced mutagenesis, physio-biochemical profiling and field evaluation of mutants in sugarcane cv. CoM 0265. Int J Radiat Biol. 2022;98(7):1261-76. https://doi.org/10.1080/09553002.2022.2024291
- 5. Di Pauli V, Fontana PD, Lewi DM, Felipe A, Erazzú LE. Optimized somatic embryogenesis and plant regeneration in elite Argentinian sugarcane (Saccharum spp.) cultivars. J Genet Eng Biotechnol. 2021;19(1):171. https://doi.org/10.1186/s43141-021-00270-8
- 6. Riajaya PD, Hariyono B, Cholid M, Kadarwati FT, Santoso B, Djumali, et al. Growth and yield potential of new sugarcane varieties during plant and first ratoon crops. Sustainability. 2022;14(21):14396. https://doi.org/10.3390/su142114396
- 7. Rahman MA, Wu W, Yan Y, Bhuiyan SA. Overexpression of TERF1 in sugarcane improves tolerance to drought stress. Crop Pasture Sci. 2021;72(4):268-79. https://doi.org/10.1071/CP20161
- 8. Sathish D, Theboral J, Vasudevan V, Pavan G, Ajithan C, Appunu C, et al. Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediated transformation efficiency in sugarcane (Saccharum spp. hybrid). In Vitro Cell Dev Biol Plant. 2020;56(1):29-40. https://doi.org/10.1007/s11627-019-10022-6
- 9. Masoabi M, Lloyd J, Kossmann J, Van Der Vyver C. Ethyl methanesulfonate mutagenesis and in vitro polyethylene glycol selection for drought tolerance in sugarcane (Saccharum spp.). Sugar Tech. 2018;20(1):50-9. https://doi.org/10.1007/s12355-017-0524-8
- 10. Jamil S, Shahzad R, Talha GM, Sakhawat G, Sajid-ur-Rahman, Sultana R, et al. Optimization of protocols for in vitro regeneration of sugarcane (Saccharum officinarum). Int J Agron. 2017;2017:1-8. https://doi.org/10.1155/2017/2089381
- 11. Ullah M, Khan MS. Effects of carbon sources and growth regulators on the tissue culture of sugarcane. Sarhad J Agric. 2022;38(1):312-21. https://doi.org/10.17582/journal.sja/2022/38.1.312.321
- 12. Arain S, Kaloi GM, Ahmad S, Rajput MA, Mari AH, Al-Qahtani WH, et al. Effect of dichlorophenoxyacetic acid (2,4-D) concentrations on callus induction in sugarcane (Saccharum officinarum). Appl Ecol Environ Res. 2024;22(5):4951-60. https://doi.org/10.15666/aeer/2205_49514960
- 13. Nogueira GF, Luis ZG, Pasqual M, Scherwinski-Pereira JE. High-efficiency somatic embryogenesis of Brazilian Saccharum spp. hybrids (sugarcane) using explants from in vitro plants. In Vitro Cell Dev Biol Plant. 2019;55(1):26-35. https://doi.org/10.1007/s11627-018-09954-2
- 14. Jamil MW, Ali SA, Sabir W, Alvi A. Optimization of protocol for callus formation and shoot development in sugarcane (Saccharum officinarum L.) cultivar CPF-248. J Glob Innov Agric Sci. 2022;10:229-35. https://doi.org/10.22194/JGIAS/10.1018
- 15. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell. 2016;28(9):1998-2015. https://doi.org/10.1105/tpc.16.00124
- 16. Saleem Y, Emad MZ, Ali A, Naz S. Synergetic effect of different plant growth regulators on micropropagation of sugarcane (Saccharum officinarum L.) by callogenesis. Agriculture. 2022;12(11):1812. https://doi.org/10.3390/agriculture12111812
- 17. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- 18. Ahmad K, Jalal A, Rajab H, Ullah M, Khan MS. Screening of promising Brassica napus L. genotypes for callus induction and regeneration. Int J Biol Biotechnol. 2016;13(2):203-15.
- 19. Sparg S, Kulkarni M, Light M, Van Staden J. Improving seedling vigour of indigenous medicinal plants with smoke. Bioresour Technol. 2005;96(12):1323-30. https://doi.org/10.1016/j.biortech.2004.11.015
- 20. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630-3. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
- 21. The jamovi project. jamovi. Version 2.6 [computer software]. 2024.
- 22. R Core Team. R: a language and environment for statistical computing. Version 4.4 [computer software]. 2024.
- 23. Aslam MM, Karanja JK, Zhang Q, Lin H, Xia T, Akhtar K, et al. In vitro regeneration potential of white lupin (Lupinus albus) from cotyledonary nodes. Plants. 2020;9(3):318. https://doi.org/10.3390/plants9030318
- 24. Su YH, Liu YB, Zhang XS. Auxin-cytokinin interaction regulates meristem development. Mol Plant. 2011;4(4):616-25. https://doi.org/10.1093/mp/ssr007
- 25. Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature. 2007;449(7165):1008-13. https://doi.org/10.1038/nature06215
- 26. Werner T, Schmülling T. Cytokinin action in plant development. Curr Opin Plant Biol. 2009;12(5):527-38. https://doi.org/10.1016/j.pbi.2009.07.002
- 27. Sughra MG, Altaf SA, Rafique RM, Muhammad MS, Balouch SNR, Umar DM. In vitro regenerability of different sugarcane (Saccharum officinarum L.) varieties through shoot tip culture. Pak J Biotechnol. 2014;11(1):13-23.
- 28. Moun S, Kaewrahun S, Janket A. Development of combination rapid propagation techniques for cassava (Manihot esculenta Crantz) cultivars in an aeroponic system. Int J Agron. 2024;2024:5561454. https://doi.org/10.1155/2024/5561454
- 29. Barik SR, Pandit E, Sanghamitra P, Mohanty SP, Behera A, Mishra J, et al. Genomic regions controlling seed vigour index, root growth parameters and germination percent in rice. PLoS One. 2022;17(7):e0267303. https://doi.org/10.1371/journal.pone.0267303
Downloads
Download data is not yet available.