Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Accelerating AI-driven solutions for insect pest detection in Indian agriculture: A systematic review

DOI
https://doi.org/10.14719/pst.9496
Submitted
19 May 2025
Published
27-08-2025
Versions

Abstract

The increasing demand for agricultural production is heavily constrained by biotic stresses such as insect pests, diseases and nematodes, which significantly reduce crop productivity. Traditional pest monitoring methods, which are often manual, time-consuming, labour-intensive and reliant on expert identification, are prone to human error and unsustainable for large-scale implementation. With the advent of digital agriculture, artificial intelligence (AI) has become a transformative tool for enhancing pest detection and management. AI-driven technologies, particularly those integrating computer vision, deep learning and machine learning, offer automated and accurate identification of pests, minimizing the misuse of chemical inputs and reducing ecological damage. Smart devices and sensor networks equipped with AI capabilities enable real-time surveillance of both biotic and abiotic stresses, promoting efficient, targeted and environmental conscious pest control strategies. This review systematically explores the historical development of AI based insect pest detection in India, highlighting their potential to enhance precision monitoring, reduce reliance on conventional practices and support sustainable crop protection. Furthermore, it addresses the key challenges associated with AI adoption in the identification of insect pests and outlines future research directions to accelerate the development and deployment of intelligent pest management systems.

References

  1. 1. Nanni L, Manfè A, Maguolo G, Lumini A, Brahnam S. High performing ensemble of convolutional neural networks for insect pest image detection. Ecol Inform. 2022;67:101515. https://doi.org/10.1016/j.ecoinf.2021.101515.
  2. 2. Martiniello P. Development of a database computer management system for retrieval on varietal field evaluation and plant breeding information in agriculture. Comput Electron Agric. 1988;2(3):183–92. https://doi.org/10.1016/0168-1699(88)90023-3.
  3. 3. Thorpe KW, Ridgway RL, Webb RE. A computerized data management and decision support system for gypsy moth management in suburban parks. Comput Electron Agric. 1992;6(4):333–45. https://doi.org/10.1016/0168-1699(92)90004-7.
  4. 4. Doitsidis L, Fouskitakis GN, Varikou KN, Rigakis II, Chatzichristofis SA, Papafilippaki AK, et al. Remote monitoring of the Bactrocera oleae (Gmelin) (Diptera: Tephritidae) population using an automated McPhail trap. Comput Electron Agric. 2017;137:69–78. https://doi.org/10.1016/j.compag.2017.03.014.
  5. 5. Tirelli P, Borghese NA, Pedersini F, Galassi G, Oberti R, editors. Automatic monitoring of pest insects traps by Zigbee-based wireless networking of image sensors. 2011 IEEE International Instrumentation and Measurement Technology Conference; 2011 May 10–12. https://doi.org/10.1109/IMTC.2011.5944204.
  6. 6. Sun C, Flemons P, Gao Y, Wang D, Fisher N, Salle JL, editors. Automated Image Analysis on Insect Soups. 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA); 2016 Nov 30–Dec 2. https://doi.org/10.1109/DICTA.2016.7797010.
  7. 7. Kumar N, Nagarathna, Flammini F. YOLO-based light-weight deep learning models for insect detection system with field adaption. Agriculture. 2023;13(3):741. https://doi.org/10.3390/agriculture13030741.
  8. 8. Kasinathan T, Uyyala SR. Machine learning ensemble with image processing for pest identification and classification in field crops. Neural Comput Appl. 2021;33(13):7491–504. https://doi.org/10.1007/s00521-020-05497-z.
  9. 9. Léon B, Olivier C, Dennis D, Jason W. Scaling learning algorithms toward AI. In: Large-scale kernel machines. MIT Press; 2007. p. 321–59. https://doi.org/10.7551/mitpress/7496.003.0016.
  10. 10. Hassan M, Wang Y, Wang D, Li D, Liang Y, Zhou Y, et al. Deep learning analysis and age prediction from shoeprints. Forensic Sci Int. 2021;327:110987. https://doi.org/10.1016/j.forsciint.2021.110987.
  11. 11. Hassan M, Wang Y, Pang W, Wang D, Li D, Zhou Y, et al. GUV-Net for high fidelity shoeprint generation. Complex Intell Syst. 2022;8(2):933–47. https://doi.org/10.1007/s40747-021-00558-9.
  12. 12. Ahmad I, Yang Y, Yue Y, Ye C, Hassan M, Cheng X, et al. Deep learning based detector YOLOv5 for identifying insect pests. Appl Sci. 2022;12(19):10167. https://doi.org/10.3390/app121910167.
  13. 13. Mkonyi L, Rubanga D, Richard M, Zekeya N, Sawahiko S, Maiseli B, et al. Early identification of Tuta absoluta in tomato plants using deep learning. Sci Afr. 2020;10:e00590. https://doi.org/10.1016/j.sciaf.2020.e00590.
  14. 14. Oyege I, Sibitenda H, Bhaskar MSB. Deep learning applications for real-time and early detection of fall armyworm, African armyworm and maize stem borer. Mach Learn Appl. 2024;18:100596. https://doi.org/10.1016/j.mlwa.2024.100596.
  15. 15. Kariyanna B, Sowjanya M. Unravelling the use of artificial intelligence in management of insect pests. Smart Agric Technol. 2024;8:100517. https://doi.org/10.1016/j.atech.2024.100517.
  16. 16. Toscano-Miranda R, Toro M, Aguilar J, Caro M, Marulanda A, Trebilcok A. Artificial-intelligence and sensing techniques for the management of insect pests and diseases in cotton: a systematic literature review. J Agric Sci. 2022;160(1–2):16–31. https://doi.org/10.1017/S002185962200017X.
  17. 17. Chandra A, Hendrati LY. The relationship characteristics and knowledge of premenstrual syndrome (PMS) with anxiety in adolescents. Media Gizi Kesmas. 2023;12(1):558–65. https://doi.org/10.20473/mgk.v12i1.2023.558-565.
  18. 18. Dhanaraj RK, Ali MA. Deep learning-enabled pest detection system using sound analytics in the Internet of Agricultural Things. Eng Proc. 2023;58(1):123. https://doi.org/10.3390/ecsa-10-16205.
  19. 19. Nilsson H. Remote sensing and image analysis in plant pathology. Annu Rev Phytopathol. 1995;33:489–528. https://doi.org/10.1146/annurev.py.33.090195.002421.
  20. 20. Abd El-Ghany NM, Abd El-Aziz SE, Marei SS. A review: application of remote sensing as a promising strategy for insect pests and diseases management. Environ Sci Pollut Res. 2020;27(27):33503–15. https://doi.org/10.1007/s11356-020-09517-2.
  21. 21. Prabhakar M, Prasad YG, Thirupathi M, Sreedevi G, Dharajothi B, Venkateswarlu B. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Comput Electron Agric. 2011;79(2):189–98. https://doi.org/10.1016/j.compag.2011.09.012.
  22. 22. Aziz D, Rafiq S, Saini P, Ahad I, Gonal B, Rehman SA, et al. Remote sensing and artificial intelligence: revolutionizing pest management in agriculture. Front Sustain Food Syst. 2025;9. https://doi.org/10.3389/fsufs.2025.1551460.
  23. 23. Singh CB, Jayas DS, Paliwal J, White NDG. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Comput Electron Agric. 2010;73(2):118–25. https://doi.org/10.1016/j.compag.2010.06.001.
  24. 24. Prabhakar M, Prasad YG, Rao MN. Remote Sensing of Biotic Stress in Crop Plants and Its Applications for Pest Management. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M, editors. Crop Stress and its Management: Perspectives and Strategies. Dordrecht: Springer; 2012. p. 305–21. doi:10.1007/978-94-007-2220-0_16.
  25. 25. Sharma S, Rai S, Krishnan NC. Wheat crop yield prediction using deep LSTM model [Preprint]. 2020 Nov 3 [cited 2025 Jul 18]. Available from: arXiv:2011.01498.
  26. 26. Sharada K, Choudhary SL, Harikrishna T, Dixit RS, Suman SK, Ayyappa Chakravarthi M, et al. GeoAgriGuard: AI-driven pest and disease management with remote sensing for global food security. Remote Sens Earth Syst Sci. 2025:1–14. https://doi.org/10.1007/s41976-025-00192-w.
  27. 27. Marković D, Vujičić D, Tanasković S, Đorđević B, Ranđić S, Stamenković Z. Prediction of pest insect appearance using sensors and machine learning. Sensors. 2021;21(14):4846. https://doi.org/10.3390/s21144846.
  28. 28. Bukhari SAS, Mushtaq AR, Butt MH, Shahid M. AI-driven strategies for predicting and managing insect pest dynamics under climate change. Trends Anim Plant Sci, 2025, 5: 46-53.
  29. 29. Dodda Chowdappa S, Nebapure S, Chander S. Development and validation of weather based prediction model for Helicoverpa armigera in chickpea. J Agrometeorol. 2017;19:328–33. https://doi.org/10.54386/jam.v19i4.600.
  30. 30. Ashok P, Jayachandran J, Gomathi SS, Jayaprakasan M. Pest detection and identification by applying color histogram and contour detection by SVM model. Int J Eng Adv Technol. 2019;8(3):463–7.
  31. 31. Theivaprakasham H. Identification of Indian butterflies using deep convolutional neural network. J Asia-Pac Entomol. 2021;24(1):329–40. https://doi.org/10.1016/j.aspen.2020.11.015.
  32. 32. Kasinathan T, Singaraju D, Uyyala SR. Insect classification and detection in field crops using modern machine learning techniques. Inf Process Agric. 2021;8(3):446–57. https://doi.org/10.1016/j.inpa.2020.09.006.
  33. 33. Kundur NC, Mallikarjuna P. Insect pest image detection and classification using deep learning. Int J Adv Comput Sci Appl. 2022;13(9). https://doi.org/10.14569/IJACSA.2022.0130947.
  34. 34. Ramalingam B, Mohan RE, Pookkuttath S, Gómez BF, Sairam Borusu CSC, Wee Teng T, et al. Remote insects trap monitoring system using deep learning framework and IoT. Sensors. 2020;20(18):5280. https://doi.org/10.3390/s20185280.
  35. 35. Sheema D, Ramesh K, Reshma V, Surendiran R. The detection and identification of pest-FAW infestation in maize crops using IoT-based deep-learning algorithm. SSRG Int J Electr Electron Eng. 2022;9(12):180–8. https://doi.org/10.14445/23488379/IJEEE-V9I12P116.
  36. 36. Purushotham P, Rakhonde G, Reddy NK, Nayak AM, Pravalika KM, Sahana G. Harvesting the future: navigating the challenges and limitations of AI in agriculture. In: Pandey K, Kushwaha NL, Pande CB, Singh KG, editors. Artificial Intelligence and Smart Agriculture: Technology and Applications. Singapore: Springer Nature Singapore; 2024. p. 547–64. https://doi.org/10.1007/978-981-97-0341-8_25.
  37. 37. Kashif M, Khan S, Bibi M. Applications of artificial intelligence in pest management. 2022. p. 277–300. https://doi.org/10.1201/9781003311782-13.
  38. 38. Li X. Origins of Ancient Chinese Civilization: The Pre-Qin Period. Zhao H, translator. Singapore: Springer Nature Singapore; 2024. doi:10.1007/978-981-97-3504-4.
  39. 39. Li X. Bronzes and the west of the Shang dynasty. In: Li X, editor. Origins of Ancient Chinese Civilization: The Pre-Qin Period. Singapore: Springer Nature Singapore; 2024. p. 171–80. https://doi.org/10.1007/978-981-97-3504-4_21.
  40. 40. Hasteer N, Mallik A, Nigam D, Sindhwani R, Van Belle J-P. Analysis of challenges to implement artificial intelligence technologies in agriculture sector. Int J Syst Assur Eng Manag. 2024;15(5):1841–60. https://doi.org/10.1007/s13198-023-02164-z.
  41. 41. Li X. Prospects of artificial intelligence applications in future agriculture. Adv Resour Res. 2024;4(2):171–80.
  42. 42. Sood A, Sharma RK, Bhardwaj AK. Artificial intelligence research in agriculture: a review. Online Inf Rev. 2022;46(6):1054–75. https://doi.org/10.1108/OIR-10-2020-0448.
  43. 43. Preti M, Verheggen F, Angeli S. Insect pest monitoring with camera-equipped traps: strengths and limitations. J Pest Sci. 2021;94:1–15. https://doi.org/10.1007/s10340-020-01309-4.
  44. 44. Dawn N, Ghosh T, Ghosh S, Saha A, Mukherjee P, Sarkar S, et al. Implementation of artificial intelligence, machine learning and Internet of Things (IoT) in revolutionizing agriculture: a review on recent trends and challenges. Int J Exp Res Rev. 2023;30:190–218. https://doi.org/10.52756/ijerr.2023.v30.018.
  45. 45. Chawla R, Kumar S, Sahoo L, Raghuvanshi H, Mohapatra D, Afreen N. Transforming agriculture through artificial intelligence: advancements in plant disease detection, applications and challenges. J Adv Biol Biotechnol. 2024;27:381–8. https://doi.org/10.9734/jabb/2024/v27i5796.
  46. 46. Thenmozhi K, Reddy US, editors. Image processing techniques for insect shape detection in field crops. 2017 International Conference on Inventive Computing and Informatics (ICICI); 2017 Nov 23–24. https://doi.org/10.1109/ICICI.2017.8365226.
  47. 47. Nagar H, Sharma RS, editors. Pest detection on leaf using image processing. 2021 International Conference on Computer Communication and Informatics (ICCCI); 2021 Jan 27–29. https://doi.org/10.1109/ICCCI50826.2021.9402606.
  48. 48. Xie C, Zhang J, Li R, Li J, Hong P, Xia J, et al. Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning. Comput Electron Agric. 2015;119:123–32. https://doi.org/10.1016/j.compag.2015.10.015.
  49. 49. Wang J, Lin C, Ji L, Liang A. A new automatic identification system of insect images at the order level. Knowledge-Based Systems. 2012;33:102–10. https://doi.org/10.1016/j.knosys.2012.03.014.
  50. 50. Mundada R. Detection and classification of pests in greenhouse using image processing. IOSR J Electron Commun Eng. 2013;5:57–63. https://doi.org/10.9790/2834-565763.
  51. 51. Huddar SR, Gowri S, Keerthana K, Vasanthi S, Rupanagudi SR, editors. Novel algorithm for segmentation and automatic identification of pests on plants using image processing. 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12); 2012 July 26–28. https://doi.org/10.1109/ICCCNT.2012.6396012.
  52. 52. Maharlooei M, Sivarajan S, Bajwa SG, Harmon JP, Nowatzki J. Detection of soybean aphids in a greenhouse using an image processing technique. Comput Electron Agric. 2017;132:63–70. https://doi.org/10.1016/j.compag.2016.11.019.
  53. 53. Venugoban K, Ramanan A. Image classification of paddy field insect pests using gradient-based features. Int J Mach Learn Comput. 2014;4(1):1. https://doi.org/10.7763/IJMLC.2014.V4.376.
  54. 54. Pavithra N, Murthy VS. An image processing algorithm for pest detection. Perspect Commun Embedded-Syst Signal-Process. 2017;1(3):24–6.
  55. 55. Assiri M, Elhameed ESA, Kumar A, Singla C. Automated insect detection and classification using pelican optimization algorithm with deep learning on internet of enabled agricultural sector. SN Comput Sci. 2024;5(5):576. https://doi.org/10.1007/s42979-024-02893-3.
  56. 56. Dewari S, Gupta M, Kumar R, editors. Agricultural insect pest's recognition system using deep learning model. Third Congress on Intelligent Systems; 2023; Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9225-4_22.
  57. 57. Anwar Z, Masood S. Exploring deep ensemble model for insect and pest detection from images. Procedia Comput Sci. 2023;218:2328–37. https://doi.org/10.1016/j.procs.2023.01.208.
  58. 58. Kumar KS, Abdul Rahman A, editors. Early detection of locust swarms using deep learning. In: Advances in Machine Learning and Computational Intelligence. Singapore: Springer Singapore; 2021. p.1-5. https://doi.org/10.1007/978-981-15-5243-4_27.
  59. 59. Patel DJ, Bhatt N. Insect identification among deep learning's meta-architectures using TensorFlow. Int J Eng Adv Technol. 2019;9(1):1910–4. https://doi.org/10.35940/ijeat.A1031.109119.
  60. 60. Devisurya V, Vidhyaa V, Shobiya K, Suguna C. Insect and pest detection in stored grains: analysis of environmental factors and comparison of deep learning methods. WSEAS Trans Environ Dev. 2022;18:759–68. https://doi.org/10.37394/232015.2022.18.71.
  61. 61. Ali MA, Sharma AK, Dhanaraj RK. Heterogeneous features and deep learning networks fusion-based pest detection, prevention and controlling system using IoT and pest sound analytics in a vast agriculture system. Comput Electr Eng. 2024;116:109146. https://doi.org/10.1016/j.compeleceng.2024.109146.
  62. 62. Jamali PV, Nambi E, M L, Saravanan S, V C. Rice-YOLO: an automated insect monitoring in rice storage warehouses with the deep learning model. ACS Agric Sci Technol. 2025;5(2):206–21. https://doi.org/10.1021/acsagscitech.4c00633.
  63. 63. Vamsi BT, Yadla J, Kumar GV, editors. Application of IP102 dataset in pest detection by using deep learning techniques. 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI); 2023 May 25–26. https://doi.org/10.1109/ACCAI58221.2023.10199252.
  64. 64. Verma S, Tripathi S, Singh A, Ojha M, Saxena RR, editors. Insect detection and identification using YOLO algorithms on soybean crop. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON); 2021 Dec 7–10. https://doi.org/10.1109/TENCON54134.2021.9707354.
  65. 65. Sharmila VC, Chauhan N, Kumar R, Barwal SK, editors. Design of intelligent insect monitoring system using deep learning techniques. In: I3CAC 2021: Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7–8 June 2021, Bharath University, Chennai, India. European Alliance for Innovation; 2021. https://doi.org/10.4108/eai.7-6-2021.2308788.

Downloads

Download data is not yet available.