Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Climate change impacts on agriculture and forests: Analytical methods review

DOI
https://doi.org/10.14719/pst.9497
Submitted
19 May 2025
Published
12-08-2025 — Updated on 23-08-2025
Versions

Abstract

Climate and climate change are critical factors influencing global ecosystems, agriculture and forestry. Climate refers to the long-term patterns of temperature, precipitation and atmospheric conditions, while climate change refers to significant alterations in these patterns over time. This review examines the impacts of climate change on natural systems, with particular focus on variations in temperature, precipitation and related climatic variables. The review integrates advanced statistical methodologies, including homogeneity tests, trend analysis and change-point detection, to analyze climate data and identify patterns of variability and shifts over time. Homogeneity tests are used to detect sudden changes or inhomogeneities caused by non-climatic variables (from station relocations or instrumental changes). Trend analysis is employed to detect long-term changes in climate variables such as temperature and precipitation, providing information on existing climate changes. Change-point detection tests help identify specific points at which significant shifts in climatic patterns occur, which may influence sudden transitions in ecosystems. Collectively, these tools enhance our ability to detect, interpret and respond to the evolving nature of climate change, thereby supporting timely and informed adaptation strategies in the fields of agriculture and forestry.

References

  1. 1. Panda A, Sahu N. Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmospheric Sci Lett. 2019 Oct 1;20(10). https://doi.org/10.1002/asl.93
  2. 2. World Meteorological Organization. WMO statement on the status of the global climate in 2006. 2006.
  3. 3. Kotir JH. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ Dev Sustain. 2011;13:587–605. https://doi.org/10.1007/s10668-010-9278-0
  4. 4. Raihan A. A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. J Environ Sci Econ. 2023;2(3):36–58. https://doi.org/10.56556/jescae.v2i3.587
  5. 5. Intergovernmental Panel on Climate Change. Synthesis Report: Summary for Policymakers. 2023.
  6. 6. Kogo BK, Kumar L, Koech R. Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environ Dev Sustain. 2021;23:23–43. https://doi.org/10.1007/s10668-020-00589-1
  7. 7. Jha RK, Kalita PK, Cooke RA. Assessment of climatic parameters for future climate change in a major agricultural state in India. Climate. 2021 Jul 1;9(7). https://doi.org/10.3390/cli9070111
  8. 8. Fróna D, Szenderák J, Harangi-Rákos M. The challenge of feeding the world. Sustainability. 2019;11. https://doi.org/10.3390/su11205816
  9. 9. Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ Dev Sustain. 2020 Aug 1;22(6):5045–75. https://doi.org/10.1007/s10668-019-00414-4
  10. 10. Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res. 2022;29:42539–59. https://doi.org/10.1007/s11356-022-19718-6
  11. 11. Vincent LA. A technique for the identification of inhomogeneities in Canadian temperature series. J Climate. 1998;11:1094–104.
  12. 12. Jaiswal RK, Lohani AK, Tiwari HL. Statistical analysis for change detection and trend assessment in climatological parameters. Environ Process. 2015 Dec 1;2(4):729–49. https://doi.org/10.1007/s40710-015-0105-3
  13. 13. Gocic M, Trajkovic S. Analyse des tendances des données d'évapotranspiration de référence en climat humide. Hydrol Sci J. 2014;59(1):165–80. https://doi.org/10.1080/02626667.2013.798659
  14. 14. Malhi GS, Kaur M, Kaushik P. Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability. 2021;13. https://doi.org/10.3390/su13031318
  15. 15. Shadmani M, Marofi S, Roknian M. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman's Rho tests in arid regions of Iran. Water Resour Manag. 2012 Jan;26(1):211–24. https://doi.org/10.1007/s11269-011-9913-z
  16. 16. Asfaw A, Simane B, Hassen A, Bantider A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather Clim Extrem. 2018 Mar 1;19:29–41. https://doi.org/10.1016/j.wace.2017.12.002
  17. 17. Latrech B, Yacoubi S, Hermassi T, Slatni A, Jarray F, Pouget L. Homogeneity and trend analysis of climatic variables in Cap-Bon region of Tunisia. Appl Sci. 2023 Oct 1;13(19). https://doi.org/10.3390/app131910593
  18. 18. Aminikhanghahi S, Cook DJ. A survey of methods for time series change point detection. Knowl Inf Syst. 2017 May 1;51(2):339–67. https://doi.org/10.1007/s10115-016-0987-z
  19. 19. Itoh N, Kurths J. World Congress on Engineering and Computer Science: WCECS 2010: 20–22 October, 2010, San Francisco, USA. Newswood Ltd., International Association of Engineers; 2010. 1216 p.
  20. 20. Ribeiro S, Caineta J, Costa AC. Review and discussion of homogenisation methods for climate data. Phys Chem Earth. 2016;94:167–79. https://doi.org/10.1016/j.pce.2015.08.007
  21. 21. Squintu AA, van der Schrier G, Štěpánek P, Zahradníček P, Tank AK. Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset. Theor Appl Climatol. 2020 Apr 1;140(1–2):285–301. https://doi.org/10.1007/s00704-019-03018-0
  22. 22. Patakamuri SK, Muthiah K, Sridhar V. Long-term homogeneity, trend, and change-point analysis of rainfall in the arid district of Ananthapuramu, Andhra Pradesh State, India. Water. 2020 Jan 1;12(1). https://doi.org/10.3390/w12010211
  23. 23. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, et al. Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol. 1998;18:1493–507. https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T
  24. 24. Gopalakrishnan R, Jayaraman M, Bala G, Ravindranath NH. Climate change and Indian forests. Curr Sci. 2011;101.
  25. 25. Von Neumann J. Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat. 1941;13:367–95.
  26. 26. Wald A, Wolfowitz J. An exact test for randomness in the non-parametric case based on serial correlation. Ann Math Stat. 1943;14:378–88.
  27. 27. Mann H. Non-parametric tests against trend. Econometrica. 1945;13(3):245–59. https://doi.org/10.2307/1907187
  28. 28. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947;18:50–60.
  29. 29. Kruskal W. A non-parametric test for the several sample problem. Ann Math Stat. 1952;23:525–40.
  30. 30. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47. https://doi.org/10.2307/2280779
  31. 31. Pettitt AN. A non-parametric approach to the change-point problem. J R Stat Soc C Appl Stat. 1979;28. https://doi.org/10.2307/2346729
  32. 32. Kohler MA. On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments.
  33. 33. Craddock JM. Methods of comparing annual rainfall records for climatic purposes. Weather. 1979;34(9):332–46. https://doi.org/10.1002/j.1477-8696.1979.tb03465.x
  34. 34. Potter K. Illustration of a new test for detecting a shift in mean in precipitation series. Mon Weather Rev. 1981;109:2040–5.
  35. 35. Buishand T. Some methods for testing the homogeneity of rainfall records. J Hydrol. 1982;58:11–27.
  36. 36. Easterling DR, Peterson TC. A new method for detecting undocumented discontinuities in climatological time series. Int J Climatol. 1995;15:369–77. https://doi.org/10.1002/joc.3370150403
  37. 37. Allen R, Pereira L, Raes D, Smith M. Statistical analysis of weather data sets. In: Crop evapotranspiration – Guidelines for computing crop water requirements. Rome: FAO; 1998. (FAO Irrigation and Drainage Paper 56, Annex IV)
  38. 38. Alexandersson H. A homogeneity test applied to precipitation data. J Climatol. 1986;6:661–75. https://doi.org/10.1002/joc.3370060607
  39. 39. Alexandersson H, Moberg A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int J Climatol. 1997;17:25–34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J
  40. 40. Szentimrey T. Multiple analysis of series for homogenization (MASH). In: Proceedings of the Second Seminar for Homogenization of Surface Climatological Data; 1999; Budapest, Hungary. WMO, WCDMP No. 41, WMO-TD 1962. p. 27–46.
  41. 41. Caussinus H. Detection and correction of artificial shifts in climate series. Appl Stat. 2004;53:405–25. https://doi.org/10.1111/j.1467-9876.2004.05155.x
  42. 42. Costa ACM, Negreiros J, Soares A. Identification of inhomogeneities in precipitation time series using stochastic simulation. Available from: http://eca.knmi.nl
  43. 43. Domonkos P. Adapted Caussinus-Mestre algorithm for networks of temperature series (ACMANT). Int J Geosci. 2011;2(3):293–309. https://doi.org/10.4236/ijg.2011.23032
  44. 44. Domonkos P. Homogenization of precipitation time series with ACMANT. Theor Appl Climatol. 2015 Oct 26;122(1–2):303–14. https://doi.org/10.1007/s00704-014-1298-5
  45. 45. S. Ribeiro, J. Caineta, A.C. Costa, Review and discussion of homogenisation methods for climate data, Physics and Chemistry of the Earth, Parts A/B/C, Volume 94, 2016, Pages 167-179, ISSN 1474-7065, https://doi.org/10.1016/j.pce.2015.08.007.
  46. 46. Mahmood R, Jia S. Spatial and temporal hydro-climatic trends in the transboundary Jhelum River basin. J Water Clim Change. 2017 Sep 1;8(3):423–40. https://doi.org/10.2166/wcc.2017.005
  47. 47. Ahmad W, Fatima A, Awan UK, Anwar A. Analysis of long-term meteorological trends in the middle and lower Indus Basin of Pakistan – A non-parametric statistical approach. Glob Planet Change. 2014 Nov 1;122:282–91. https://doi.org/10.1016/j.gloplacha.2014.09.007
  48. 48. Almazroui M, Şen Z. Trend analyses methodologies in hydro-meteorological records. Earth Syst Environ. 2020;4:713–38. https://doi.org/10.1007/s41748-020-00190-6
  49. 49. Haan CT. Statistical methods in hydrology. Ames (IA): Iowa State University Press; 1977. 378 p.
  50. 50. Sonali P, Nagesh Kumar D. Review of trend detection methods and their application to detect temperature changes in India. J Hydrol. 2013 Jan 7;476:212–27. https://doi.org/10.1016/j.jhydrol.2012.10.034
  51. 51. Sen PK. Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc. 1968;63(324):1379–89. https://doi.org/10.1080/01621459.1968.10480934
  52. 52. Yue S, Pilon P, Phinney B, Cavadias G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process. 2002 Jun 30;16(9):1807–29. https://doi.org/10.1002/hyp.1095
  53. 53. Hamed KH, Rao AR. A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. 1998;204:182–96. https://doi.org/10.1016/S0022-1694(97)00125-X
  54. 54. Kundzewicz ZW, Robson AJ. Change detection in hydrological records: a review of the methodology. Hydrol Sci J. 2004;49(1):7–19. https://doi.org/10.1623/hysj.49.1.7.53993
  55. 55. Modarres R, Sarhadi A. Rainfall trends analysis of Iran in the last half of the twentieth century. J Geophys Res Atmos. 2009 Feb 16;114(3). https://doi.org/10.1029/2008JD010707
  56. 56. Şen Z. Innovative trend analysis methodology. J Hydrol Eng. 2012 Sep;17(9):1042–6. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
  57. 57. C. Alippi and M. Roveri, "An adaptive CUSUM-based test for signal change detection," 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece, 2006, pp. 4 pp.-, https://doi.org/10.1109/ISCAS.2006.1693942.
  58. 58. Hassani H. Singular spectrum analysis: methodology and comparison. J Data Sci. 2021 Jul 12;5(2):239–57. https://doi.org/10.6339/JDS.2007.05(2).396
  59. 59. Hushchyn M, Ustyuzhanin A. Generalization of change-point detection in time series data based on direct density ratio estimation. J Comput Sci. 2021 Jul 1;53. https://doi.org/10.1016/j.jocs.2021.101385
  60. 60. Truong C, Oudre L, Vayatis N. Selective review of offline change point detection methods. Signal Process. 2020;167:107299. https://doi.org/10.1016/j.sigpro.2019.107299
  61. 61. Lund RB, Beaulieu C, Killick R, Lu Q, Shi X. Good practices and common pitfalls in climate time series changepoint techniques: A review. J Clim. 2023 Dec 1;36(23):8041–57. https://doi.org/10.1175/JCLI-D-22-0954.1
  62. 62. Reeves J, Chen J, Wang XL, Lund R, Lu QQ. A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol. 2007 Jun;46(6):900–15. https://doi.org/10.1175/JAM2493.1
  63. 63. Hinkley DV. Inference about the intersection in two-phase regression. Biometrika. 1969;66(2):471–80. https://doi.org/10.2307/2334655
  64. 64. Lund R, Reeves J. Detection of undocumented changepoints: A revision of the two-phase regression model. J Clim. 2002;15:2547–54.
  65. 65. Ai H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;AC-19(6):716–23.
  66. 66. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.
  67. 67. Verbesselt J, Hyndman R, Newnham G, Culvenor D. Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ. 2010 Jan 15;114(1):106–15. https://doi.org/10.1016/j.rse.2009.08.014
  68. 68. Alotaibi M. Climate change, its impact on crop production, challenges, and possible solutions. Not Bot Horti Agrobot Cluj Napoca. 2023;51(1). https://doi.org/10.15835/nbha51113020
  69. 69. Prajapati HA, Yadav K, Hanamasagar Y, Kumar MB, Khan T, Belagalla N, et al. Impact of climate change on global agriculture: Challenges and adaptation. Int J Environ Clim Change. 2024 Apr 18;14(4):372–9. https://doi.org/10.9734/ijecc/2024/v14i44123
  70. 70. Shakoor MB, Ali S, Tauqeer HM, Hannan F, Rizvi H, Ali B, et al. Vulnerability of climate change to agricultural systems in third world countries and adaptation practices. Int J Agron Plant Prod. 2013;4(10):2502–13.
  71. 71. Patil A, Mutum Lamnganbi I. Impact of climate change on soil health: A review. Int J Chem Stud. 2018;6(3):2399–404.
  72. 72. Kalra N, Chander S, Pathak H, Aggarwal PK, Gupta NC, Chakraborty D. Impacts of climate change on agriculture. Outlook Agric. 2007;36(2):109–18. https://doi.org/10.5367/000000007781159903
  73. 73. Goyal MK, Surampalli RY. Impact of climate change on water resources in India. J Environ Eng. 2018 Jul;144(7):04018047. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001394
  74. 74. Altaf L, Bhat AA. Impact of climate change on insects/pests and diseases and their management. www.ijaas.org.in
  75. 75. Bhat TA, Ganie SA, Ahanger RA, Bhat HA, Ganie SA, Lone AA, et al. Impact of climate change on plant diseases. Int J Mod Plant Anim Sci. 2013;1(3):105–15.
  76. 76. Kaur G, Singh H, Maurya S, Kumar C, Kumar A. Current scenario of climate change and its impact on plant diseases. Plant Sci Today. 2023;10(3):163–71. https://doi.org/10.14719/pst.2479
  77. 77. Sun Q, Liu W, Gao Y, Li J, Yang C. Spatiotemporal variation and climate influence factors of vegetation ecological quality in the Sanjiangyuan National Park. Sustainability. 2020 Aug 1;12(16):6634. https://doi.org/10.3390/su12166634
  78. 78. Ortega MA, Cayuela L, Griffith DM, Camacho A, Coronado IM, del Castillo RF, et al. Climate change increases threat to plant diversity in tropical forests of Central America and southern Mexico. PLoS One. 2024 Feb 1;19(2):e0297840. https://doi.org/10.1371/journal.pone.0297840
  79. 79. Tabor K, Hewson J, Tien H, González-Roglich M, Hole D, Williams JW. Tropical protected areas under increasing threats from climate change and deforestation. Land. 2018 Sep 1;7(3):90. https://doi.org/10.3390/land7030090
  80. 80. Nunes LJR, Meireles CIR, Gomes CJP, Ribeiro NMCA. The impact of climate change on forest development: A sustainable approach to management models applied to Mediterranean-type climate regions. Plants. 2022;11(1):69. https://doi.org/10.3390/plants11010069
  81. 81. Barik A, Baidya Roy S. Climate change strongly affects future fire weather danger in Indian forests. Commun Earth Environ. 2023 Dec 1;4(1):307. https://doi.org/10.1038/s43247-023-01112-w

Downloads

Download data is not yet available.