Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advances in resistance breeding and integrated strategies for managing anthracnose in leguminous vegetables

DOI
https://doi.org/10.14719/pst.9498
Submitted
19 May 2025
Published
11-09-2025
Versions

Abstract

Anthracnose, caused by hemibiotrophic fungi of the Colletotrichum genus, is a major fungal disease of leguminous vegetables, leading to substantial yield losses and economic damage worldwide. Currently, cultural practices and substantial use of synthetic fungicides are the primary approaches for managing anthracnose. However, there is a growing focus on developing advanced breeding lines and cultivars with improved resistance to anthracnose. Traditional breeding has led to the identification of a wide range of anthracnose resistance resources, particularly in common bean, soybean, lentil, cowpea and lupins. Recent advances in molecular approaches, including genomics,
transcriptomics, proteomics and metabolomics, have enhanced our understanding of the pathogenesis and defense mechanisms involved in the Colletotrichum-legume interaction. Genetic manipulation through omics technologies improves the efficiency of breeding programmes thereby offers better scope to protect legumes from anthracnose. This review focuses on key pathogens causing anthracnose in legumes, including C. truncatum, C. lentis, C. lupini, C. lindemuthianum and their biology and epidemiology. We discuss disease management strategies, including progress with host resistance, genetic and breeding approaches and highlight critical knowledge gaps in conventional and molecular breeding programmes. The continuous advancement in developing breeding lines, cultivars and donor plants with enhanced resistance to anthracnose in legumes driven by omics-based approaches is providing new understanding of legume-pathogen interactions. This progress supports the development of more sustainable and efficient strategies for managing the diseases in the future.

References

  1. 1. Krupa U. Main nutritional and antinutritional compounds of bean seeds - A review. Pol J Food Nutr Sci. 2008;58:149-55. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-399f8e1c-3012-4785-9afb-f101eefa98e0
  2. 2. Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibañez F, Wang J, et al. Molecular basis of root nodule symbiosis between Bradyrhizobium and ‘crack-entry’ legume groundnut (Arachis hypogaea L.). Plants. 2020;9(2):276. https://doi.org/10.3390/plants9020276
  3. 3. Coleman E. Four-Season Harvest: Organic Vegetables from Your Home Garden all Year Long. Chelsea Green Publishing; 2012.
  4. 4. Kelly JD, Cichy KA, Siddiq M, Uebersax MA. Dry bean breeding and production technologies. In: Siddiq M, Uebersax MA, editors. Dry Beans and pulses: Production, processing, and nutrition. Wiley-Blackwell; 2013. p. 23-54. https://doi.org/10.1002/9781118448298.ch2
  5. 5. Sá AG, Moreno YM, Carciofi BA. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci Technol. 2020;97:170-84. https://doi.org/10.1016/j.tifs.2020.01.011
  6. 6. Dias MD, Pinheiro VF, Cafe-Filho AC. Impact of anthracnose on the yield of soybean subjected to chemical control in the north region of Brazil. Summa Phytopathol. 2016;42:18-23. https://doi.org/10.1590/0100-5405/2114
  7. 7. Nataraj V, Maranna S, Kumawat G, Gupta S, Rajput LS, Kumar S, et al. Genetic inheritance and identification of germplasms sources for anthracnose resistance in soybean [Glycine max (L.) Merr.]. Genet Resour Crop Evol. 2020;67:1449-56. https://doi.org/10.1007/s10722-020-00917-4
  8. 8. Pandey AK, Basandrai AK, Basandrai D, Boddepalli VN, Rathore A, Adapala G, et al. Field-relevant new sources of resistance to anthracnose caused by Colletotrichum truncatum in a mungbean mini-core collection. Plant Dis. 2021;105:2001-10. https://doi.org/10.1094/PDIS-12-20-2722-RE
  9. 9. Lima LRL, Gonçalves-Vidigal MC, Vaz Bisneta M, Valentini G, Vidigal Filho PS, Martins VSR, et al. Genetic fine-mapping of anthracnose disease-resistance allele Co-14 present in the Andean common bean cultivar AND 277. Crop Sci. 2023;63:750-63. https://doi.org/10.1002/csc2.20905
  10. 10. Rao SN, Bhattiprolu SL, Kumari VP, Gopal AV, Kumar PA. Cross infectivity studies of Colletotrichum spp., causing Anthracnose in different beans. Andhra Agric J. 2020;67:70-75.
  11. 11. Chakraborty N, Sarkar A, Dasgupta A, Paul A, Mukherjee K, Acharya K. In planta validation of nitric oxide mediated defense responses in common bean against Colletotrichum gloeosporioides infection. Indian Phytopathol. 2022;75:15-24. https://doi.org/10.1007/s42360-021-00425-0
  12. 12. Kaur S, Gonçalves-Vidigal MC, Davidson J, Mysore KS, Pandey AK. Disease and pest resistance in legume crops. Front Plant Sci. 2023;14:1166387. https://doi.org/10.3389/fpls.2023.1166387
  13. 13. Perseguini JMKC, Oblessuc PR, Rosa J RBF, Gomes KA, Chiorato AF, Carbonell SAM, et al. Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLoS One. 2016;11:e0150506. https://doi.org/10.1371/journal.pone.0150506
  14. 14. Luo M, Jiang Y. First report of anthracnose caused by Colletotrichum karsti in lentil (Lablab purpureus). Crop Prot. 2022;155:105903. https://doi.org/10.1016/j.cropro.2021.105903
  15. 15. Sharma SK, Gupta GK, Ramteke R. Colletotrichum truncatum [(Schw.) Andrus and W.D.]. Soybean Res. 2011;9:31-52.
  16. 16. Marin-Felix Y, Groenewald JZ, Cai L, Chen Q, Marincowitz S, Barnes I, et al. Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol. 2017;86:99-216. https://doi.org/10.1016/j.simyco.2017.04.002
  17. 17. Cannon PF, Damm U, Johnston PR, Weir BS. Colletotrichum: Current status and future directions. Stud Mycol. 2012;73:181-213. https://doi.org/10.3114/sim0014
  18. 18. da Silva LL, Moreno HLA, Correia HLN, Santana MF, Queiroz MV. Colletotrichum: Species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl Microbiol Biotechnol. 2020;104:1891-1904. https://doi.org/10.1007/s00253-020-10363-y
  19. 19. Weir BS, Johnston PR, Damm U. The Colletotrichum gloeosporioides species complex. Stud Mycol. 2012;73:115-80. https://doi.org/10.3114/sim0011
  20. 20. Damm U, O'Connell RJ, Groenewald JZ, Crous PW. The Colletotrichum destructivum species complex - hemibiotrophic pathogens of forage and field crops. Stud Mycol. 2014;79:49-84. https://doi.org/10.1016/j.simyco.2014.09.003
  21. 21. Perfect SE, Hughes HB, O'Connell RJ, Green JR. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genet Biol. 1999;27:186-98. https://doi.org/10.1006/fgbi.1999.1143
  22. 22. Sutton BC. The genus Glomerella and its anamorph Colletotrichum. In: Bailey JA, Jeger MJ, editors. Colletotrichum: Biology, Pathology and Control. John Wiley and Sons; 1992. p. 1-26.
  23. 23. Ploetz RE, Prakash O. Foliar, floral, and soil-borne diseases. Fungal Divers. 1997;39(1):281-325. https://doi.org/10.1079/9781845934897.0231
  24. 24. Fagan HJ. Strains of Colletotrichum gloeosporioides on citrus in Belize. Trans Br Mycol Soc. 1980;156. https://doi.org/10.1016/S0007-1536(80)80070-2
  25. 25. Masyahit M. The first report of the occurrence of anthracnose disease caused by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. on dragon fruit (Hylocereus spp.) in Peninsular Malaysia. Am J Appl Sci. 2009;6:902-12. https://doi.org/10.3844/ajassp.2009.902.912
  26. 26. Li HY, Zhang ZF. First report of Colletotrichum gloeosporioides causing anthracnose fruit rot of Trichosanthes kirilowii in China. Plant Dis. 2007;91(5):636. https://doi.org/10.1094/PDIS-91-5-0636C
  27. 27. Nguyen THP, Säll T, Bryngelsson T, Liljeroth E. Variation among Colletotrichum gloeosporioides isolates from infected coffee berries at different locations in Vietnam. Plant Pathol. 2009;58(5):898-909. https://doi.org/10.1111/j.1365-3059.2009.02085.x
  28. 28. Latinovic J, Vucinic Z. Cultural characteristics, pathogenicity, and host range of Colletotrichum gloeosporioides isolated from olive plants in Montenegro. Plant Pathol. 2000;6:53-55.
  29. 29. Barbosa MPM. Pathogenic variability of Colletotrichum graminicola from maize (Zea mays L) [Master's thesis]. Escola Superior de Agricultura Luiz de Queiroz. 2001. https://doi.org/10.11606/D.11.2002.tde-02082002-150304
  30. 30. Gupta S, Jarial K, Kansal S. Colletotrichum gloeosporioides causing anthracnose in bell pepper seed crop: A new record from Himachal Pradesh. J Plant Dis Sci. 2009;4:126-27.
  31. 31. Manandhar JB, Hartman GL, Wang TC. Anthracnose development on pepper fruits inoculated with Colletotrichum gloeosporioides. Plant Pathol. 1995;18(2):145-50.
  32. 32. Freeman S, Katan T. Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology. 1997;87:516-21. https://doi.org/10.1094/PHYTO.1997.87.5.516
  33. 33. Cai L, Hyde KD, Taylor P, Weir BS, Waller JM, Abang MM, et al. A polyphasic approach for studying Colletotrichum. Fungal Divers. 2009;39:183-204.
  34. 34. Enyiukwu DN, Awurum AN, Ononuju CC, Nwaneri JA. Biology and management strategies of cowpea anthracnose disease caused by Colletotrichum species. Greener J Biochem Biotechnol. 2014;1:52-65. https://doi.org/10.15580/GJBB.2014.2.070414288
  35. 35. Adam-Blondon AF, SeVignac M, Bannerot H, Dron M. SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet. 1994;88:865-70. https://doi.org/10.1007/BF01253998
  36. 36. Shi M, Xue SM, Zhang MY, Li SP, Huang BZ, Huang Q, et al. Colletotrichum truncatum-A new etiological anthracnose agent of sword bean (Canavalia gladiata) in Southwestern China. Pathogens. 2022;11:1463. https://doi.org/10.3390/pathogens11121463
  37. 37. Yang HC, Hartman GL. Anthracnose. In: Hartman GL, Rupe J, Sikora EJ, editors. Compendium of Soybean Diseases and Pests. American Phytopathological Society; 2015. p. 31-34. https://doi.org/10.1094/9780890544754
  38. 38. Yang HC, Haudenshield JS, Hartman GL. Colletotrichum incanum sp. nov., a curved-conidial species causing soybean anthracnose in USA. Mycologia. 2014;106:32-42. https://doi.org/10.3852/13-013
  39. 39. Pandey AK, Burlakoti RR, Kenyon L, Nair RM. Perspectives and challenges for sustainable management of fungal diseases of mungbean [Vigna radiata (L.) R. Wilczek var. radiata]: A review. Front Environ Sci. 2018;6:53. https://doi.org/10.3389/fenvs.2018.00053
  40. 40. Adhikari KN, Buirchell BJ, Thomas GJ, Sweetingham MW, Yang H. Identification of anthracnose resistance in Lupinus albus L. and its transfer from landraces to modern cultivars. Crop Pasture Sci. 2009;60:472-79. https://doi.org/10.1071/CP08092
  41. 41. Singh S, Prasad D, Singh VP. Evaluation of fungicides and genotypes against anthracnose disease of mungbean caused by Colletotrichum lindemuthianum. Int J Bio-Resour Stress Manag. 2022;13:448-53. https://doi.org/10.23910/1.2022.2884
  42. 42. Kavanashree K, Jahagirdar S, Priyanka K, Uday G, Kambrekar DN, Krishnaraj PU, et al. Molecular variability of Colletotrichum spp. associated with anthracnose of soybean. Legume Res. 2022;45:1048-53. https://doi.org/10.18805/LR-4871
  43. 43. Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y. Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryot Cell. 2013;12:2-11. https://doi.org/10.1128/EC.00192-12
  44. 44. Nirenberg HI, Feiler U, Hagedorn G. Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia. 2002;94:307-20. https://doi.org/10.1080/15572536.2003.11833238
  45. 45. Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW. The Colletotrichum dracaenophilum species complex. Stud Mycol. 2019;92:1-46. https://doi.org/10.1016/j.simyco.2018.04.001
  46. 46. Mahmodi F, Kadir JB, Nasehi A, Puteh A, Soleimani N. Occurrence of anthracnose caused by Colletotrichum truncatum on chickpea (Cicer arietinum) in Malaysia. Plant Dis. 2013;97:1507. https://doi.org/10.1094/PDIS-03-13-0231-PDN
  47. 47. Riccioni L, Conca G, Hartman GL. First report of Colletotrichum coccodes on soybean in the United States. Plant Dis. 1998;82:959. https://doi.org/10.1094/PDIS.1998.82.8.959C
  48. 48. Barbieri MCG, Ciampi-Guillardi M, Moraes SRG, Bonaldo SM, Rogério F, Linhares RR, et al. First report of Colletotrichum cliviae causing anthracnose on soybean in Brazil. Plant Dis. 2017;101:1677. https://doi.org/10.1094/PDIS-07-16-0963-PDN
  49. 49. Boufleur TR, Castro RRL, Rogerio F, Ciampi-Guillardi M, Baroncelli R, Massola Junior NS. First report of Colletotrichum musicola causing soybean anthracnose in Brazil. Plant Dis. 2020;104:1858. https://doi.org/10.1094/PDIS-12-19-2627-PDN
  50. 50. Shi NN, Ruan HC, Jie YL, Chen FR, Du YX. Characterization, fungicide sensitivity and efficacy of Colletotrichum spp. from chili in Fujian, China. Crop Prot. 2021;143:105572. https://doi.org/10.1016/j.cropro.2021.105572
  51. 51. Chen LS, Chu C, Liu CD, Chen RS, Tsay JG. PCR-based detection and differentiation of anthracnose pathogens, Colletotrichum gloeosporioides and C. truncatum, from vegetable soybean in Taiwan. J Phytopathol. 2006;154:654-62. https://doi.org/10.1111/j.1439-0434.2006.01163.x
  52. 52. Aggarwal SK, Mali BL, Rajput LS, Choudhary M. Management of anthracnose in black gram caused by Colletotrichum lindemuthianum. J Mycol Plant Pathol. 2015;45(3): 263-66.
  53. 53. Hernández-Alvarez AJ, Carrasco-Castilla J, Dávila-Ortiz G, Alaiz M, Girón-Calle J, Vioque-Peña J, et al. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds. J Sci Food Agric. 2013;93:961-66. https://doi.org/10.1002/jsfa.5841
  54. 54. Adebanjo A, Bankole SA. Evaluation of some fungi and bacteria for biocontrol of anthracnose disease of cowpea. J Basic Microbiol: An Int J Biochem Physiol Genetics Morphology Ecol Microorgan. 2004;44(1):3-9. https://doi.org/10.1002/jobm.200310310.
  55. 55. Anitha K, Kumar GS, Abraham B, Chakrabarty SK. Interception of Colletotrichum lindemuthianum (Sacc. & Magn.) Bri. & Cav. on sunflower seed from Argentina, a new host record. Ann Plant Prot Sci. 2020;28:190. https://doi.org/10.5958/0974-0163.2020.00050.6
  56. 56. Zhao Q, Chen X, Ren GW, Wang J, Liu L, Qian WG, et al. First report of Colletotrichum chlorophyti causing peanut anthracnose in China. Plant Dis. 2021;105:226. https://doi.org/10.1094/PDIS-11-20-2324-PDN
  57. 57. Yang HC, Haudenshield JS, Hartman GL. First report of Colletotrichum chlorophyti causing soybean anthracnose. Plant Dis. 2012;96:1699. https://doi.org/10.1094/PDIS-06-12-0531-PDN
  58. 58. Freeman S, Katan T, Shabi E. Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Appl Environ Microbiol. 1996;62:1014-20. https://doi.org/10.1128/aem.62.3.1014-1020.1996
  59. 59. Riera N, Ramirez-Villacis D, Barriga-Medina N, Alvarez-Santana J, Herrera K, Ruales C, et al. First report of banana anthracnose caused by Colletotrichum gloeosporioides in Ecuador. Plant Dis. 2019;103:763. https://doi.org/10.1094/PDIS-01-18-0069-PDN
  60. 60. Intan Sakinah MA, Suzianti IV, Latiffah Z. First report of Colletotrichum gloeosporioides causing anthracnose of banana (Musa spp.) in Malaysia. Plant Dis. 2013;97:991. https://doi.org/10.1094/PDIS-10-12-0985-PDN
  61. 61. Bele L, Kouamé DK, Atta HD. Sensitivity of Colletotrichum species responsible for banana anthracnose disease to some fungicides used in postharvest treatments in Côte d'Ivoire. Int J Environ Agric Biotechnol. 2018;3:537-42. https://doi.org/10.22161/ijeab/3.2.30
  62. 62. Dwi S, Sri W, Edy BMS, Erman M. Utilization of chitinolytic bacterial isolates to control anthracnose of cocoa leaf caused by Colletotrichum gloeosporioides. Afr J Biotechnol. 2014;13:1631-37. https://doi.org/10.5897/AJB11.3687
  63. 63. Awa OC, Samuel O, Oworu OO, Sosanya O. First report of fruit anthracnose in mango caused by Colletotrichum gloeosporioides in Southwestern Nigeria. Int J Sci Technol Res. 2012;1:30-34.
  64. 64. Rampersad SN, Perez-Brito D, Torres-Calzada C, Tapia-Tussell R, Carrington CVF. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico. BMC Evol Biol. 2013;13:1-17. https://doi.org/10.1186/1471-2148-13-130
  65. 65. Kim KC, Fan B, Chen Z. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol. 2006;142:1180-92. https://doi.org/10.1104/pp.106.082487
  66. 66. Xie L, Zhang JZ, Wan Y, Hu DW. Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. J Zhejiang Univ Sci B. 2010;11:61-70. https://doi.org/10.1631/jzus.B0900174
  67. 67. Zhang L, Song L, Xu X, Zou X, Duan K, Gao Q. Characterization and fungicide sensitivity of Colletotrichum species causing strawberry anthracnose in eastern China. Plant Dis. 2020;104:1960-68. https://doi.org/10.1094/PDIS-10-19-2241-RE
  68. 68. Belle C, Ramos RF, Moccellin R, Farias CRJ. Detection of Colletotrichum coccodes causing leaf anthracnose on Pisum sativum in southern Brazil. J Plant Pathol. 2020;102:255. https://doi.org/10.1007/s42161-019-00392-6
  69. 69. Purkayastha RP, Gupta MS. Studies on conidial germination and appressoria formation in Colletotrichum gloeosporioides Penz. causing anthracnose of jute (Corchorus olitorius L.). J Plant Dis Prot. 1973;3:718-24. http://www.jstor.org/stable/43382590
  70. 70. Marak T, Sandham T, Mahapatra S, Das S. Measuring and assessing the yield loss and yield loss model of green gram due to anthracnose of green gram (Vigna radiata). Legume Res. 2020;43:678-82. https://doi.org/10.18805/lr-4030
  71. 71. Mohammed A. An overview of distribution, biology and the management of common bean anthracnose. J Plant Pathol Microbiol. 2013;4:1-6. https://doi.org/10.4172/2157-7471.1000193
  72. 72. Rana DS, Dass A, Rajanna GA, Kaur R. Biotic and abiotic stress in pulses. Indian J Agron. 2016;61:238-48.
  73. 73. Alkemade JA, Arncken C, Hirschvogel C, Messmer MM, Leska A, Voegele RT, et al. The potential of alternative seed treatments to control anthracnose disease in white lupin. Crop Prot. 2022;158:106009. https://doi.org/10.1016/j.cropro.2022.106009
  74. 74. Yousef S. Bean Anthracnose Control Using Different Beneficial Bacteria; 2021. p. 1-20.
  75. 75. Salotti I, Ji T, Rossi V. Temperature requirements of Colletotrichum spp. belonging to different clades. Front Plant Sci. 2022;13:953760. https://doi.org/10.3389/fpls.2022.953760
  76. 76. Lamichhane JR, You MP, Laudinot V, Barbetti MJ, Aubertot JN. Revisiting sustainability of fungicide seed treatments for field crops. Plant Dis. 2020;104:610-23. https://doi.org/10.1094/PDIS-06-19-1157-FE
  77. 77. Kumar A, Rawa R, Roy N, Ahamad A, Kumar H. Evaluation of fungicides for management of anthracnose disease of black gram (Vigna mungo L.) in growing areas of district Jhansi of Bundelkhand region. J Appl Nat Sci. 2020;12:110-114. https://doi.org/10.31018/jans.vi.2257
  78. 78. Poti T, Mahawan K, Cheewangkoon R, Arunothayanan H, Akimitsu K, Nalumpang S. Detection and molecular characterization of carbendazim-resistant Colletotrichum truncatum isolates causing anthracnose of soybean in Thailand. J Phytopathol. 2020;168:267-78. https://doi.org/10.1111/jph.12888
  79. 79. Han Y, Zeng X, Xiang F, Zhang Q, Guo C, Chen F, et al. Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. J Integr Agric. 2018;17:1391-1400. https://doi.org/10.1016/S2095-3119(17)61854-9
  80. 80. Lokya Naik BH, Anilkumar TB. Conidial production and germination in carbendazim and thiophanate resistant strains of Colletotrichum lindemuthianum from cowpea. Zentralbl Mikrobiol. 1991;146:463-65. https://doi.org/10.1016/S0232-4393(11)80232-5
  81. 81. Mishra RK, Bohra A, Kamaal N, Kumar K, Gandhi K, Sujayanand GK, et al. Utilization of biopesticides as sustainable solutions for management of pests in legume crops: Achievements and prospects. Egypt J Biol Pest Control. 2018;28:1-11. https://doi.org/10.18311/jbc/2019/23214
  82. 82. Amin M, Fitsum S, Thangavel S, Negeri M. Field management of anthracnose (Colletotrichum lindemuthianum) in common bean through fungicides and bioagents. Adv Crop Sci Technol. 2014;2:1-8. https://doi.org/10.4172/2329-8863.1000124
  83. 83. Sileshi F, Mohammed A, Selvaraj T, Negeri M. Field management of anthracnose (Colletotrichum lindemuthianum) in common bean through foliar spray fungicides and seed treatment bioagents. Sci Technol Arts Res J. 2014;3:19. https://doi.org/10.4314/star.v3i2.3
  84. 84. Chatak S, Banyal DK. Evaluation of IDM components for the management of urdbean anthracnose caused by Colletotrichum truncatum (Schwein) Andrus and Moore. Himachal J Agric Res. 2021;46:156-161. https://hjar.org/index.php/hjar/article/view/158204
  85. 85. Bardas GA, Lagopodi AL, Kadoglidou K, Tzavella-Klonari K. Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol Control. 2009;49:139-45. https://doi.org/10.1016/j.biocontrol.2009.01.012
  86. 86. Kumar P, Pandey P, Dubey RC, Maheshwari DK. Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere. 2016;2:13-23. https://doi.org/10.1016/j.rhisph.2016.09.002
  87. 87. Kale SL, Barhate BG. Management of anthracnose in soybean caused by Colletotrichum truncatum. Int J Plant Prot. 2016;9:583-88. https://doi.org/10.15740/HAS/IJPP/9.2/583-588
  88. 88. Padder BA, Kamfwa K, Awale HE, Kelly JD. Transcriptome profiling of the Phaseolus vulgaris-Colletotrichum lindemuthianum pathosystem. PLoS One. 2016;11:e0165823. https://doi.org/10.1371/journal.pone.0165823
  89. 89. Sharma N, Thakur R, Rana D, Sharma P, Basandrai AK. Combating bean anthracnose through integrated disease management. Plant Dis Res. 2022;37:15-22. https://doi.org/10.5958/2249-8788.2022.00003.8
  90. 90. Shiny A, Mathew D, Nazeem PA, Abida PS, Mathew SK, Valsala PA. Identification and confirmation of trailing-type vegetable cowpea resistance to anthracnose. Trop Plant Pathol. 2015;40:169-175. https://doi.org/10.1007/s40858-015-0032-x
  91. 91. Costa LC, Nalin RS, Ramalho MA, de Souza EA. Are duplicated genes responsible for anthracnose resistance in common bean? PLoS One. 2017;12(3):e0173789. https://doi.org/10.1371/journal.pone.0173789
  92. 92. de Lima Castro SA, Gonçalves-Vidigal MC, Gilio TAS, Lacanallo GF, Valentini G, da Silva Ramos Martins V, et al. Genetics and mapping of a new anthracnose resistance locus of Andean common bean Paloma. BMC Genomics. 2017;18:306. https://doi.org/10.1186/s12864-017-3685-7
  93. 93. Gonçalves-Vidigal MC, Gilio TAS, Valentini G, Vaz-Bisneta M, Vidigal Filho PS, Song Q, et al. New Andean source of resistance to anthracnose and angular leaf spot: Fine mapping of disease-resistance genes in California dark red kidney common bean cultivar. PLoS One. 2020;15:e0235215. https://doi.org/10.1371/journal.pone.0235215
  94. 94. Méndez-Vigo B, Rodríguez-Suárez C, Pañeda A, Ferreira JJ, Giraldez R. Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica. 2005;141:237-45. https://doi.org/10.1007/s10681-005-7075-x
  95. 95. Alzate-Marin AL, Baia GS, Paula TJ, De Souza KA, De Barros EG, Moreira MA. Inheritance of anthracnose resistance in the common bean differential cultivar G 2333 and identification of a new molecular marker linked to the Co-4² gene. J Phytopathol. 2001;149:259-64. https://doi.org/10.1046/j.1439-0434.2001.00612.x
  96. 96. Campa A, Giraldez R, Ferreira JJ. Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU. Theor Appl Genet. 2009;119:1-11. https://doi.org/10.1007/s00122-009-1011-8
  97. 97. Campa A, Giraldez R, Ferreira JJ. Genetic analysis of the resistance to eight anthracnose races in the common bean differential cultivar kaboon. Phytopathology. 2011;101:757-64. https://doi.org/10.1094/PHYTO-11-10-0296
  98. 98. Alzate-Marin AL, Souza KAD, Morais Silva MGD, Oliveira EJD, Moreira MA, Barros EGD. Genetic characterization of anthracnose resistance genes Co-4³ and Co-9 in common bean cultivar Tlalnepantla 64 (PI 207262). Euphytica. 2007;154:1-8. https://doi.org/10.1007/s10681-006-9253-x
  99. 99. Lima Castro SA, Gonçalves-Vidigal MC, Gilio TAS, Lacanallo GF, Valentini G, Silva Ramos Martins V, et al. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma. BMC Genomics. 2017;18:306. https://doi.org/10.1186/s12864-017-3685-7
  100. 100. Gonçalves-Vidigal MC, Pacheco CMR, Vidigal Filho PS, Lacanallo GF, Sousa LL, Martins VSR. Genetic mapping of the anthracnose resistance gene Co-14 in the common bean cultivar Pitanga. Annu Rep Bean Improv Coop. 2016;59:85-86. https://doi.org/10.1111/j.1439-0523.2011.01939.x
  101. 101. Gonçalves-Vidigal MC, Silva CR, Vidigal Filho PS, Gonela A, Kvitschal MV. Allelic relationships of anthracnose (Colletotrichum lindemuthianum) resistance in the common bean (Phaseolus vulgaris L.) cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11. Genet Mol Biol. 2007;30:589-93. https://doi.org/10.1590/S1415-47572007000400015
  102. 102. Lacanallo GF, Gonçalves-Vidigal MC. Mapping of an Andean gene for anthracnose resistance (Co-13) in common bean (Phaseolus vulgaris L.) Jalo Listras Pretas landrace. Aust J Crop Sci. 2015;9:394-400.
  103. 103. Zuiderveen GH, Padder BA, Kamfwa K, Song Q, Kelly JD. Genome-wide association study of anthracnose resistance in Andean beans (Phaseolus vulgaris). PLoS One. 2016;11:e0156391. https://doi.org/10.1371/journal.pone.0156391
  104. 104. Hegay S, Geleta M, Bryngelsson T, Asanaliev A, Garkava-Gustavsson L, Persson Hovmalm H, et al. Introducing host-plant resistance to anthracnose in Kyrgyz common bean through inoculation-based and marker-aided selection. Plant Breed. 2014;133:86-91. https://doi.org/10.1111/pbr.12121
  105. 105. Vazin M, Navabi A, Pauls PK, McDonald MR, Gillard C. Characterization of anthracnose resistance in common bean [Master's thesis]. University of Guelph; 2015.
  106. 106. Coimbra-Gonçalves GK, Gonçalves-Vidigal MC, Coelho RT, Valentini G, Filho PSV, Lacanallo GF, et al. Characterization and mapping of anthracnose resistance gene in Mesoamerican common bean cultivar Crioulo 159. Crop Sci. 2016;56:2904-15. https://doi.org/10.2135/cropsci2015.10.0651
  107. 107. Costa Lara Fioreze AC, Grigolo S, Piva CAG, Sartori L. Common bean landraces as potential sources of resistance to anthracnose. Pesq Agropec Trop. 2018;48:126-33. https://doi.org/10.1590/1983-40632018v4851251
  108. 108. Marcon JRS, Gonçalves-Vidigal MC, Paulino JFC, Vidigal Filho PS, Coelho M. Genetic resistance of common bean cultivar Beija Flor to Colletotrichum lindemuthianum. Acta Sci Agron. 2020;43:e44910. https://doi.org/10.4025/actasciagron.v43i1.44910
  109. 109. Almeida CPD, Carvalho Paulino JFD, Barbosa CCF, Moraes Cunha Goncalves GD, Fritsche-Neto R, Carbonell SAM, et al. Genome-wide association mapping reveals race-specific SNP markers associated with anthracnose resistance in carioca common beans. PLoS One. 2021;16:e0251745. https://doi.org/10.1371/journal.pone.0251745
  110. 110. Banoo A, Nabi A, Rasool RS, Mahiya-Farooq, Shah MD, Ahmad M, et al. North-Western Himalayan common beans: Population structure and mapping of quantitative anthracnose resistance through genome-wide association study. Front Plant Sci. 2020;11:571618. https://doi.org/10.3389/fpls.2020.571618
  111. 111. Gupta C, Gupta M, Gupta S, Salgotra RK. Screening of common bean (Phaseolus vulgaris L.) germplasm against Colletotrichum lindemuthianum inciting bean anthracnose. Res J Biotechnol. 2021;17:13-18. https://doi.org/10.25303/1701rjbt1318
  112. 112. Williams RJ. The identification of multiple disease resistance in cowpea. Trop Agric (Trinidad). 1977;54:53-59. https://hdl.handle.net/10568/175387
  113. 113. Amusa NA, Ikotun T, Osikanlu YOK. Screening cowpea and soybean cultivars for resistance to anthracnose and brown blotch diseases using phytotoxin metabolites. Afr Crop Sci J. 1994;2:221-24.
  114. 114. Adebitan SA, Olufajo OO. Field evaluation of cowpea (Vigna unguiculata) varieties for grain and fodder production and for multiple disease resistance in Nigeria. Indian J Agric Sci. 1998;68:152-54. https://epubs.icar.org.in/index.php/IJAgS/article/view/27344
  115. 115. Ganesh SK, Packiaraj D, Geetha S, Gnanamalar RP, Manivannan N, Mahalingam A, et al. VBN 3: A new high yielding multiple disease resistant cowpea variety. Electron J Plant Breed. 2022;12:1375-79. https://doi.org/10.37992/2021.1204.188
  116. 116. Pradhan D, Mathew D, Mathew SK, Nazeem PA. Identifying the markers and tagging a leucine-rich repeat receptor-like kinase gene for resistance to anthracnose disease in vegetable cowpea [Vigna unguiculata (L.) Walp.]. J Hortic Sci Biotechnol. 2018;93:225-31. https://doi.org/10.1080/14620316.2017.1362962
  117. 117. Merin EG, Sarada S, Joy M. Screening of yard long bean (Vigna unguiculata ssp sesquipedalis (L.) Verdcourt) genotypes for resistance to Colletotrichum gloeosporioides. J Hortic Sci. 2022;17(2):293-97. https://doi.org/10.24154/jhs.v17i2.1469
  118. 118. Kelly JD, Vallejo VA. A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hort Sci. 2004;39:1196-1207. https://doi.org/10.21273/HORTSCI.39.6.1196
  119. 119. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol. 1971;9:275-96. https://doi.org/10.1146/annurev.py.09.090171.001423
  120. 120. Vidigal Filho PS, Gonçalves-Vidigal MC, Vaz Bisneta M, Souza VB, Gilio TAS, Calvi AA, et al. Genome-wide association study of resistance to anthracnose and angular leaf spot in Brazilian Mesoamerican and Andean common bean cultivars. Crop Sci. 2020;60:2931-50. https://doi.org/10.1002/csc2.20308
  121. 121. Geffroy V, SéVignac M, Billant P, Dron M, Langin T. Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: A case study for mapping two independent genes. Theor Appl Genet. 2008;116:407-15. https://doi.org/10.1007/s00122-007-0678-y
  122. 122. Gilio TAS, Hurtado-Gonzales OP, Gonçalves-Vidigal MC, Valentini G, Ferreira Elias JC, Song Q, et al. Fine mapping of an anthracnose-resistance locus in Andean common bean cultivar Amendoim Cavalo. PLoS One. 2020;15:e0239763. https://doi.org/10.1371/journal.pone.0239763
  123. 123. Sousa LL, Gonçalves AO, Gonçalves-Vidigal MC, Lacanallo GF, Fernandez AC, Awale H, et al. Genetic characterization and mapping of anthracnose resistance of common bean landrace cultivar Corinthiano. Crop Sci. 2015;55:1900-10. https://doi.org/10.2135/cropsci2014.09.0604
  124. 124. Trabanco N, Campa A, Ferreira JJ. Identification of a new chromosomal region involved in the genetic control of resistance to anthracnose in common bean. Plant Genome. 2015;8:2014-10. https://doi.org/10.3835/plantgenome2014.10.0079
  125. 125. Young RA, Kelly JD. RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci. 1997;37:940-46. https://doi.org/10.2135/cropsci1997.0011183x003700030039x
  126. 126. Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A, et al. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci. 2016;242:351-57. https://doi.org/10.1016/j.plantsci.2015.09.006
  127. 127. David P, SéVignac M, Thareau V, Catillon Y, Kami J, Gepts P, et al. BAC end sequences corresponding to the B4 resistance gene cluster in common bean: A resource for markers and synteny analyses. Mol Genet Genomics. 2008;280:521-33. https://doi.org/10.1007/s00438-008-0384-8
  128. 128. Geffroy V, Sicard D, de Oliveira JC, SéVignac M, Cohen S, Gepts P, et al. Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant Microbe Interact. 1999;12:774-84. https://doi.org/10.1094/MPMI.1999.12.9.774
  129. 129. Nkalubo S. Study of anthracnose (Colletotrichum lindemuthianum) resistance and its inheritance in Ugandan dry bean germplasm [dissertation]. University Of Kwazulu-Natal, Pietermaritzburg; 2006.
  130. 130. Richard MMS, Gratias A, Alvarez Diaz JC, Thareau V, Pflieger S, Meziadi C, et al. A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus Colletotrichum lindemuthianum. J Exp Bot. 2021;72:3569-81. https://doi.org/10.1093/jxb/erab082
  131. 131. Ferreira JJ, Campa A, Kelly JD. Organization of genes conferring resistance to anthracnose in common bean. In: Varshney RK, Tuberosa R, editors. Translational genomics for crop breeding: Biotic stress. John Wiley & Sons, Inc.; 2013. p. 151-81. https://doi.org/10.1002/9781118728475.ch9
  132. 132. Wu J, Zhu J, Wang L, Wang S. Genome-wide association study identifies NBS-LRR-encoding genes related with anthracnose and common bacterial blight in the common bean. Front Plant Sci. 2017;8:1398. https://doi.org/10.3389/fpls.2017.01398
  133. 133. Gonzalez AM, Yuste-Lisbona FJ, Paula Rodiño A, Ron AM, Capel C, García-Alcázar M, et al. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean. Front Plant Sci. 2015;6:141. https://doi.org/10.3389/fpls.2015.00141
  134. 134. Shafi S, Saini DK, Khan MA, Bawa V, Choudhary N, Dar WA, et al. Delineating meta-quantitative trait loci for anthracnose resistance in common bean (Phaseolus vulgaris L.). Front Plant Sci. 2022;13:966339. https://doi.org/10.3389/fpls.2022.966339
  135. 135. Sarrocco S, Herrera-Estrella A, Collinge DB. Plant disease management in the post-genomic era: From functional genomics to genome editing. Front Microbiol. 2020;11:3389. https://doi.org/10.3389/fmicb.2020.00107
  136. 136. Liang C, Zhang B, Zhou Y, Yin H, An B, Lin D, et al. CgNPG1 as a novel pathogenic gene of Colletotrichum gloeosporioides from Hevea brasiliensis in mycelial growth, conidiation, and the invasive structures development. Frontiers in Microbiology. 2021;12:629387. https://doi.org/10.3389/fmicb.2021.629387
  137. 137. Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouche S, Hartmann FE, Croll D. Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Front Plant Sci. 2017;8:119. https://doi.org/10.3389/fpls.2017.00119
  138. 138. Queiroz CB, Correia HLN, Menicucci RP, Vidigal PMP, Queiroz MV. Draft genome sequences of two isolates of Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans. Genome Announc. 2017;5:e00214-17. https://doi.org/10.1128/genomeA.00214-17
  139. 139. Lonardi S, Muñoz-Amatriaín M, Liang Q, Shu S, Wanamaker SI, Lo S, et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019;98:767-82. https://doi.org/10.1111/tpj.14349
  140. 140. Klosterman SJ, Rollins JR, Sudarshana MR, Vinatzer BA. Disease management in the genomics era - summaries of focus issue papers. Phytopathology. 2016;106:1068-70. https://doi.org/10.1094/PHYTO-07-16-0276-FI
  141. 141. Ranathunge NP, Ford R, Taylor PWJ. Development and optimization of sequence-tagged microsatellite site markers to detect genetic diversity within Colletotrichum capsici, a causal agent of chilli pepper anthracnose disease. Mol Ecol Resour. 2009;9:1175-79. https://doi.org/10.1111/j.1755-0998.2009.02608.x
  142. 142. Lopez CE, Acosta IF, Jara C, Pedraza F, Gaitan-Solís E, Gallego G, et al. Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology. 2003;93:88-95. https://doi.org/10.1094/PHYTO.2003.93.1.88
  143. 143. Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol. 2017;59:86-101. https://doi.org/10.1111/jipb.12513
  144. 144. Wang N, Xia EH, Gao LZ. Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: Chromosomal localization, structure, evolution and expression divergence. Plant Gene. 2016;5:22-30. https://doi.org/10.1016/j.plgene.2015.11.003
  145. 145. Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. https://doi.org/10.1186/s12870-016-0771-y
  146. 146. Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci. 2015;16:19248-90. https://doi.org/10.3390/ijms160819248
  147. 147. Soares MA, Nogueira GB, Bazzolli DMS, Araujo EF, Langin T, Queiroz MV. PacCl, a pH-responsive transcriptional regulator, is essential in the pathogenicity of Colletotrichum lindemuthianum, a causal agent of anthracnose in bean plants. Eur J Plant Pathol. 2014;140:769-85. https://doi.org/10.1007/s10658-014-0508-4
  148. 148. Borges LL, Santana FA, Castro I, Arruda KMA, Ramos HJO, Barros EG. Two-dimensional electrophoresis-based proteomic analysis of Phaseolus vulgaris in response to Colletotrichum lindemuthianum. J Plant Pathol. 2015;97:249-57.

Downloads

Download data is not yet available.