Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Reproductive physiology of small millets - An overview

DOI
https://doi.org/10.14719/pst.9508
Submitted
19 May 2025
Published
07-10-2025

Abstract

Small millets are climate-resilient cereals cultivated primarily in rainfed and marginal ecosystems of Asia and Africa. These crops exhibit superior adaptability to abiotic stress due to features such as C4 photosynthesis, efficient water use and robust root systems. Among the various growth stages, the reproductive phase is highly sensitive to drought and other environmental stresses, often resulting in reduced pollen viability, poor seed set and diminished grain yield. However, small millets possess unique adaptive mechanisms, including early flowering, condensed reproductive duration, high reproductive efficiency and synchronized panicle emergence, which collectively enhance their performance under water-limited conditions. Hormonal regulation involving abscisic acid and cytokinins, coupled with increased antioxidant enzyme activity, contributes to the protection of reproductive tissues and ensures successful grain formation. Despite these advantages, detailed physiological and biochemical studies on their reproductive resilience remain limited. This review consolidates existing knowledge on the reproductive physiology of small millets under rainfed conditions, emphasizing mechanisms that sustain productivity and offering insights for future crop improvement strategies.

References

  1. 1. Devi SP, Kumar D. Agrometeorological indices, physiological growth parameters and performance of finger millet as influenced by different cultivars under hot and sub humid region of Odisha. Int J Exp Res Rev. 2022;42:148-61. https://doi.org/10.52756/ijerr.2024.v42.013
  2. 2. Muthamilarasan M, Prasad M. Small millets for enduring food security amidst climate change: Recent advances and future prospects. Front Plant Sci. 2021;12:656205.
  3. 3. Patil HE. Reproductive biology, breeding behaviour, emasculation, pollination techniques and hybridization in little millet (Panicum sumatrense L.). Pharma Innov J. 2021;10(11):1117-21.
  4. 4. Govindaraj M, Kanatti A, Rai KN, Pfeiffer WH, Shivade H. Association of grain iron and zinc content with other nutrients in pearl millet germplasm, breeding lines and hybrids. Front Nutr. 2022;8:746625. https://doi.org/10.3389/fnut.2021.746625
  5. 5. Naik ML, Mondam M, Gujjula V, Jinka S, Osman BP, Nanja YR, et al. Morpho physiological and biochemical changes in finger millet [Eleusine coracana (L.) Gaertn.] under drought stress. Physiol Mol Biol Plants. 2021;27(4):885-900.
  6. 6. Patil KS, Gupta SK. Geographic patterns of genetic diversity and fertility restoration ability of Asian and African origin pearl millet populations. Crop J. 2022;10(2):468-77. https://doi.org/10.1016/j.cj.2021.04.013
  7. 7. Reddy PS, Srividya S, Khandelwal V, Satyavathi CT. Association of photosynthesis of flag leaves with grain yield in pearl millet (Pennisetum glaucum (L.) R. Br.). Ann Arid Zone. 2023;62(1):91-6. https://doi.org/10.59512/aaz.2023.62.1.10
  8. 8. Alagendran S, Mohapatra R, Sethuraman V, Niharika M, Venkatesan S, Jatav AK, et al. Millets in modern diets: A comprehensive review of their nutritional and health benefits. Eur J Nutr Food Saf. 2025;38(5):401. https://doi.org/10.9734/ejnfs/2025/v17i51733
  9. 9. Savathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl millet: A climate resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front Plant Sci. 2021;12:659938. https://doi.org/10.3389/fpls.2021.659938
  10. 10. Aravind JTS, Anuradha N, Meena MC, Yadav RS, Gupta R. Genome wide association studies and genomic selection in pearl millet: Advances and prospects. Front Genet. 2020;10:1389. https://doi.org/10.3389/fgene.2019.01389
  11. 11. Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK. PANOMICS meets germplasm. Plant Biotechnol J. 2020;18:1507-25. https://doi.org/10.1111/pbi.13372
  12. 12. Arun A, Faraday MK. A perceptive study to endorse the nutritional aspects of pearl millet (Pennisetum glaucum L.) and formulated recipes. Res J Pharm Technol. 2020;13(2):911-4. https://doi.org/10.5958/0974-360X.2020.00172.9
  13. 13. Fuller DQ, Barron A, Champion L, Dupuy C, Commelin D, Raimbault M, et al. Transition from wild to domesticated pearl millet (Pennisetum glaucum) revealed in ceramic temper at three middle Holocene sites in northern Mali. Afr Archaeol Rev. 2021;38:211-30. https://doi.org/10.1007/s10437-021-09428-8
  14. 14. Choudhary S, Guha A, Kholová J, Pandravada A, Messina CD, Cooper M, et al. Maize, sorghum and pearl millet have highly contrasting species strategies to adapt to water stress and climate change like conditions. Plant Sci. 2020;295:110297. https://doi.org/10.1016/j.plantsci.2019.110297
  15. 15. Garin V, Choudhary S, Murugesan T, Kaliamoorthy S, Diancumba M, Hajjarpoor A, et al. Characterization of the pearl millet cultivation environments in India: Status and perspectives enabled by expanded data analytics and digital tools. Agronomy. 2023;13(6):1607. https://doi.org/10.3390/agronomy13061607
  16. 16. Singh A, Kumar M, Shamim M. Importance of minor millets (nutri cereals) for nutrition purpose in present scenario. Int J Chem Stud. 2020;8(1):3109-13. https://doi.org/10.22271/chemi.2020.v8.i1au.9226
  17. 17. Singh D, Raghuvanshi K, Chaurasiya A, Dutta SK, Dubey SK. Enhancing the nutrient uptake and quality of pearl millet (Pennisetum glaucum L.) through use of biofertilizers. Int J Curr Microbiol Appl Sci. 2018;7:3296-306. https://doi.org/10.20546/ijcmas.2018.704.373
  18. 18. Stevens C, Fuller D. Sorghum and pearl millet. In: Varela SLL, editor. Encyclopedia of archaeological sciences. Vol. 1. Hoboken (NJ): Wiley; 2018. p. 1-4 https://doi.org/10.1002/9781119188230.saseas0542
  19. 19. Zhang Y, Gao J, Qie Q, Yang Y, Hou S, Wang X, et al. Comparative analysis of flavonoid metabolites in foxtail millet (Setaria italica) with different eating quality. Life. 2021;11:578. https://doi.org/10.3390/life11060578
  20. 20. Zhao W, Liu YW, Zhou JM, Zhao SP, Zhang XH, Min DH. Genome-wide analysis of the lectin receptor-like kinase family in foxtail millet (Setaria italica L.). Plant Cell Tissue Organ Cult. 2016;127:335-46. https://doi.org/10.1007/s11240-016-1053-y
  21. 21. Zhao W, Zhang LL, Xu ZS, Fu L, Pang HX, Ma YZ, et al. Genome wide analysis of MADS Box genes in foxtail millet (Setaria italica L.) and functional assessment of the role of SiMADS51 in the drought stress response. Front Plant Sci. 2021;12:659474. https://doi.org/10.3389/fpls.2021.659474
  22. 22. Yang Q, Luo Y, Wang H, Li J, Gao X, Gao J, et al. Effects of germination on the physicochemical, nutritional and in vitro digestion characteristics of flours from waxy and non waxy proso millet, common buckwheat and pea. Innov Food Sci Emerg Technol. 2021;67:102586. https://doi.org/10.1016/j.ifset.2020.102586
  23. 23. Kumar A, Vadez V, Choudhary S, Kholová J, Hash CT, Srivastava R, et al. Transpiration efficiency: Insights from comparisons of C4 cereal species. J Exp Bot. 2021;72:5221-34. https://doi.org/10.1093/jxb/erab251
  24. 24. Senthil A, Ashok S, Sritharan N, Punitha S, Divya K, Ravikesavan R. Physiological efficiency of small millets under drought condition. Madras Agricultural Journal. 2018;105(7-9)(2):363-7.
  25. 25. Vikrant KN, Roobavathi MR. Understanding the response of water and hormonal stress on seed germination and early seedling growth in kodo millet (Paspalum scrobiculatum L.). J Stress Physiol Biochem. 2021;17:46-59.
  26. 26. Vetriventhan M, Azevedo VC, Upadhyaya HD, Nirmalakumari A, Kane-Potaka J, Anitha S, et al. Genetic and genomic resources and breeding for accelerating improvement of small millets: Current status and future interventions. Nucleus. 2020;63:217-39. https://doi.org/10.1007/s13237-020-00322-3
  27. 27. Vetriventhan M, Upadhyaya HD. Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J. 2018;6:451-63. https://doi.org/10.1016/j.cj.2018.04.002
  28. 28. Bierhuizen J, Slatyer RO. Effect of atmospheric concentration of water vapour and CO2 in determining transpiration-photosynthesis relationships of cotton leaves. Agric Meteorol. 1965;2(4):259-70.
  29. 29. Ramya V, Nanja Reddy A. Comparison of correlations and path analyses between well watered and drought stress conditions in finger millet. Mysore J Agric Sci. 2022;56:226-36.
  30. 30. Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, et al. Transcriptomic studies reveal a key metabolic pathway contributing to a well maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). PeerJ. 2018;6:e4752. https://doi.org/10.7717/peerj.4752
  31. 31. Qin L, Chen E, Li F, Yu X, Liu Z, Yang Y, et al. Genome wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). Int J Mol Sci. 2020;21:e8520. https://doi.org/10.3390/ijms21228520
  32. 32. Chaithra B, Nanja Reddy YA. Assessment of traits for grain yield under drought in finger millet. J Pharmacogn Phytochem. 2023;12(1):161-4.
  33. 33. Srividhya S, Swarna M, Nayak D. Millets: Nutritional and agronomic perspectives for sustainable agriculture. Indian Farming. 2023;73(7):10-3.
  34. 34. Yu TF, Zhao WY, Fu JD, Liu YW, Chen M, Zhou YB, et al. Genome-wide analysis of the CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Front Plant Sci. 2018;9:651. https://doi.org/10.3389/fpls.2018.00651
  35. 35. Tonapi VA, Venkatesh B, Srinivasbabu S, Dyakar R. Strategies for enhancement of production and productivity of millets. In: Finger millet: Nature's master grain - Proceedings of the International Conference on Harnessing the Potential of Finger Millet for Achieving Food and Nutritional Security: Challenges and Prospects; 2022 Jan 19-22; Mandya, India. New Delhi: Excel India Publishers; 2022. p. 1-15.
  36. 36. Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J Cereal Sci. 2021;98:103162.
  37. 37. Sharma M, Meena RK. Effect of potassium on growth and productivity of millets under semi arid conditions. J Plant Nutr. 2023;46(5):807-20.
  38. 38. Singamsetti A, Choudhary M, Sivasankar A. Genetic dissection of physiological traits for yield improvement in maize under heat stress. Front Plant Sci. 2023;14:1147424. https://doi.org/10.3389/fpls.2023.1147424
  39. 39. Bhoite SU. Physiological analysis of growth and productivity in relation to nitrogen levels in foxtail millet (Setaria italica L. Beauv). Ann Plant Physiol. 2000;14(1):38-42.
  40. 40. Nagaraja TE, Nandini C, Bhat S, Parveen SG. Artificial hybridization techniques in small millets: A review. Front Plant Sci. 2023;14:1112117. https://doi.org/10.3389/fpls.2023.1112117
  41. 41. Roopa OM, Jamuna KV, Brunda SM, Darshan GB. Development and sensory evaluation of ready-to-cook idli mix from browntop millet (Panicum ramosa). Int J Sci Environ Technol. 2016;5(2):816-21.
  42. 42. Sanku G, Rajasekaran R, Boopathi NM, Krishnamoorthy I, Santhanakrishnan VP, Mani V. Transcriptomic response of minor millets to abiotic stresses. Front Sustain Food Syst. 2024;8:1435437. https://doi.org/10.3389/fsufs.2024.1435437
  43. 43. Barad SD, Karanjikar PN, Sabale AP, Sneha SB, Gawande MN. Growth and yield of little millet (Panicum sumatrense L.) as influenced by varieties and row spacings under rainfed condition. Int J Res Agron. 2024;7(11S):29-32. https://doi.org/10.33545/2618060X.2024.v7.i11Sa.1926
  44. 44. Krishna TA, Maharajan T, Roch GV, Ramakrishnan M, Ceasar SA, Ignacimuthu S. Hybridization and hybrid detection through molecular markers in finger millet [Eleusine coracana (L.) Gaertn.]. J Crop Improv. 2020;34(3):335-55. https://doi.org/10.1080/15427528.2019.1709596
  45. 45. Manjappa G, Rangaiah S, Gowda MVC. Assessment of heterotic potential of hybrids using a novel partial male sterile mutant (PS1) in finger millet (Eleusine coracana L. Gaertn.). Mysore J Agric Sci. 2019;49(2):266-9.
  46. 46. Sneha RS, Bhavsar VV, Barhate KK, Sarika NK. Correlation and path analysis for different characteristics in germplasm of finger millet (Eleusine coracana L.). Int J Curr Microbiol Appl Sci. 2019;8(1):1020-7. https://doi.org/10.20546/ijcmas.2019.801.111
  47. 47. Swarna R, Deepika C, Amasiddha B, Srividhya S. Improved agronomic practices for enhanced productivity of small millets. Indian Farming. 2023;73(1):61-3.
  48. 48. Conesa MA, Mus M, Galmès J. Leaf size as a key determinant of contrasting growth patterns in closely related Limonium (Plumbaginaceae) species. J Plant Physiol. 2019;240:152984. https://doi.org/10.1016/j.jplph.2019.05.011
  49. 49. Ferenc V, Sheppard CS. The stronger, the better-trait hierarchy is driving alien species interaction. Oikos. 2020;129:1455-67. https://doi.org/10.1111/oik.07338
  50. 50. Henn JJ, Damschen EI. Plant age affects intraspecific variation in functional traits. Plant Ecol. 2021;222:669-80. https://doi.org/10.1007/s11258-021-01136-2
  51. 51. Ramakrishnan M, Ceasar SA, Vinod KK, Duraipandiyan V, Krishna TPA, Upadhyaya HD, et al. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis. PLoS One. 2017;12:e0183261. https://doi.org/10.1371/journal.pone.0183261
  52. 52. Kalloe SA, Hofland B, Antolínez JA, van Wesenbeeck BK. Quantifying frontal surface area of woody vegetation: a crucial parameter for wave attenuation. Front Mar Sci. 2022;9:820846. https://doi.org/10.3389/fmars.2022.820846
  53. 53. Krishna M, Garkoti SC. Evergreen and deciduous tree species show distinct strategies to synchronize with seasonality in mid elevational forests of central Himalaya. For Ecol Manag. 2022;526:120567. https://doi.org/10.1016/j.foreco.2022.120567
  54. 54. Perumal S, Jayakodi M, Kim D, Yang T. The complete chloroplast genome sequence of Indian barnyard millet, Echinochloa frumentacea (Poaceae). Mitochondrial DNA Part B. 2016;2359:4-6. https://doi.org/10.1080/23802359.2015.1137832
  55. 55. Yadagouda VR, Ravindra U. Formulation and evaluation of foxtail millet composite mix for probiotication. Mysore J Agric Sci. 2022;56(1):417-25.
  56. 56. Sukanya TS, Narayanan AL. Climate resilient agriculture and small millets—an agronomic perspective. In: Sensitizing the millet farming, consumption and nutritional security-Challenges and opportunities; 2023; Karaikal, India. Karaikal: Pandit Jawaharlal Nehru College of Agriculture & Research Institute; 2023. p. 89-100.
  57. 57. Mishra M. Studies on in vitro regeneration of Panicum sumatrense using mature seed and leaf base explant. Jabalpur: Jawaharlal Nehru Krishi Vishwa Vidyalaya; 2017.
  58. 58. Parvathi MS, Nataraja KN, Reddy YAN, Naika MBN, Gowda MVC. Transcriptome analysis of finger millet (Eleusine coracana (L.) Gaertn.) reveals unique drought-responsive genes. J Genet. 2019;98:46. https://doi.org/10.1007/s12041-019-1087-0
  59. 59. Rajak K, Sprae S, Kumari R, Tiwari N. To study the indirect plant regeneration of two cultivars in barnyard millet using different combinations of plant growth regulators and compare the superior genotype for in vitro culture. Int J Curr Microbiol Appl Sci. 2018;6:205561.
  60. 60. Rajak K, Tiwari N, Kumari R. Standardize protocol for callus induction and plant regeneration in barnyard millet using different combinations of plant growth regulators. Int J Curr Microbiol Appl Sci. 2018;6:2590-6.
  61. 61. Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X. Millets: genetic and genomic resources. Plant Breed Rev. 2012;35:247-375. https://doi.org/10.1002/9781118100509.ch5
  62. 62. Sukanya TS, Kumar A, Sathya K, Chaithra C, Narayanan AL, Anand MR, et al. Nutri cereals role in Indian agriculture, food and nutritional security: a review. Mysore J Agric Sci. 2023;57(2):1-10.
  63. 63. Srikanya B, Revathi P, Reddy MM, Chandrashaker K. Effect of sowing dates on growth and yield of foxtail millet (Setaria italica L.) varieties. Int J Curr Microbiol Appl Sci. 2020;9:3243-51. https://doi.org/10.20546/ijcmas.2020.904.377
  64. 64. Salmankhan RM, Lalitha BS, Kalyana Murthy KN, Jayadeva HM, Satisha, Mohan Kumar TL. Effect of different dates of sowing, spacing and nutrient levels on growth and yield of buckwheat (Fagopyrum esculentum L.). Mysore J Agric Sci; 2021
  65. 65. Saikishore A, Rekha KB, Hussain SA, Madhavi A. Growth and yield of browntop millet as influenced by dates of sowing and nitrogen levels. Int J Chem Stud. 2020;8(5):1812-5. https://doi.org/10.22271/chemi.2020.v8.i5y.10564
  66. 66. Nandini KM, Sridhara S. Heat use efficiency, heliothermal use efficiency and photothermal use efficiency of foxtail millet (Setaria italica L.) genotypes as influenced by sowing dates under southern transition zone of Karnataka. J Pharmacogn Phytochem. 2019;26(3):284-90.
  67. 67. Lokesh T, Choudhary AA, Mairand NR. Effect of different sowing windows and line spacings on yield and economics of foxtail millet during Rabi season. J Pharm Innov. 2023;12(2):1121-3.
  68. 68. Singh M, Metwal M, Kumar VA, Kumar A. Identification and molecular characterization of 48 kDa calcium-binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass fingerprinting and transcript profiling. J Sci Food Agric. 2016;96:672-9. https://doi.org/10.1002/jsfa.7139
  69. 69. Mohanabharathi M, Sritharan N, Senthil A, Ravikesavan R. Physiological studies for yield enhancement in finger millet under drought condition. J Pharmacogn Phytochem. 2019;8(3):3308-12.
  70. 70. Anitha K, Sritharan N, Ravikesavan R, Djanaguiraman M, Senthil A. Melatonin alters photosynthesis related traits in finger millet (Eleusine coracana L.) under drought condition. Int J Chem Stud. 2019;7(3):2750-4.
  71. 71. Madhavilatha L, Ramesh B, Prathima T. Physiological characterization of foxtail millet [Setaria italica (L.) P. Beauv] genotypes under rainfed condition. Indian J Agric Res. 2022;56(3):350-5.
  72. 72. Suresh BV, Choudhary P, Aggarwal PR, Rana S, Singh RK, Ravikesavan R, et al. De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.). Genomics. 2022;114:110347. https://doi.org/10.1016/j.ygeno.2022.110347
  73. 73. Kumar GVS, Jayaramaiah R, Koler P, Bhairappanavar ST. Growth, yield and quality parameters of fodder oats (Avena sativa L.) under varied dates of sowing and nitrogen application. Mysore J Agric Sci. 2021;55:37-45.
  74. 74. Kiranmai J, Saralamma MS, Mohan CV. Assessing the influence of sowing windows on growth and yield of small millets. Int J Curr Microbiol Appl Sci. 2021;10(2):939-44. https://doi.org/10.20546/ijcmas.2021.1002.111
  75. 75. Jadipujari J, Anand SR, Nagangoudar MB, Rao GE, Kalyana Murthy KN. Performance of quinoa (Chenopodium quinoa) under varied sowing windows and planting patterns. Environ Conserv J. 2023;24(2):208-17. https://doi.org/10.36953/ECJ.11172328
  76. 76. Pannase S, Bagade SV, Sonawane DA, Sondawale PA. Effect of foxtail millet cultivars on yield and yield attributes under different sowing windows. J Sci Res Rep. 2024;30:277-88. https://doi.org/10.9734/jsrr/2024/v30i62043
  77. 77. Dimple KT, Nagamani C, Chandrika V, Kumar ARN, Sagar GK. Effect of times of sowing and nitrogen levels on yield and yield attributes of proso millet (Panicum miliaceum L.). Agric Sci Dig. 2022;10(3):18805-22. https://doi.org/10.18805/ag.D-5622
  78. 78. Devaliya SD, Singh M, Intawala CG, Bhagora RN. Genetic variability studies in finger millet (Eleusine coracana L.). Int J Pure Appl Biosci. 2018;6(11):1007-11. https://doi.org/10.20546/ijcmas.2017.611.240
  79. 79. Deepak Taggelli RG, Thakur V. Minor millets-their potential health benefits and medicinal properties: a review. Int J Pure Appl Sci. 2018;6(1):1677.
  80. 80. Nie X, Zhao X, Wang S, Zhang T, Li C, Liu H, et al. Complete chloroplast genome sequence of broomcorn millet (Panicum miliaceum L.) and comparative analysis with other Panicoideae species. Agronomy. 2018;8:159. https://doi.org/10.3390/agronomy8090159
  81. 81. Upadhyaya HD, Ravishankar CR, Narasimhudu Y, Sarma NDRK, Singh SK, Varshney SK, et al. Identification of trait-specific germplasm and developing a mini core collection for efficient use of foxtail millet genetic resources in crop improvement. Field Crops Res. 2011;124:459-67. https://doi.org/10.1016/j.fcr.2011.08.004
  82. 82. Honnaiah PA, Sridhara S, Gopakkali P, Ramesh N, Mahmoud EA, Abdelmohsen SAM, et al. Influence of sowing windows and genotypes on growth radiation interception, conversion efficiency and yield of guar. Saudi J Biol Sci. 2021;28:3453-60. https://doi.org/10.1016/j.sjbs.2021.03.010
  83. 83. Nanja Reddy YA, Lavanyabai T, Prabhakar, Ramamurthy V, Chame Gowda TC, Shankar AG, et al. Benchmark values for grain iron content in finger millet (Eleusine coracana L.). Int J Curr Microbiol Appl Sci. 2019;8(6):502-6. https://doi.org/10.20546/ijcmas.2019.806.057
  84. 84. Malhotra SK. Rabi review and Kharif prospects. In: National conference on agriculture: Kharif campaign, 2018; 2018 Apr 25; New Delhi, India. New Delhi: Ministry of Agriculture & Farmers Welfare; 2018.
  85. 85. Saleh ASM, Zhang Q, Chen J, Shen Q. Millet grains: nutritional quality, processing and potential health benefits. Compr Rev Food Sci Food Saf. 2013;12:281-95. https://doi.org/10.1111/1541-4337.12012
  86. 86. Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, et al. The genome of broomcorn millet. Nat Commun. 2019;10:436. https://doi.org/10.1038/s41467-019-08409-5
  87. 87. Davis KF, Chhttre A, Rao ND, Singh D, DeFries R. Sensitivity of grain yields to historical climate variability in India. Environ Res Lett. 2019;14:064013. https://doi.org/10.1088/1748-9326/ab22db

Downloads

Download data is not yet available.