Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Bioinoculants: A natural boost for tuber yields

DOI
https://doi.org/10.14719/pst.9509
Submitted
19 May 2025
Published
18-09-2025 — Updated on 10-10-2025
Versions

Abstract

Tuber crops play a pivotal role in global food systems. However, their productivity is often constrained by declining soil fertility, pest and disease pressures and over reliance on chemical inputs. Bioinoculants offer sustainable solutions through enhanced nutrient availability, stress tolerance and disease resistance. This review examines the application, dosage and efficiency of bioinoculants in tuber crops. Strains such as Azospirillum lipoferum have been shown to increase potato tuber weight by 16-22.7 %, while co-inoculation with Pseudomonas fluorescens and Burkholderia ambifaria improved yield by up to 63.6 %. Rhizophagus irregularis and Glomus mosseae significantly enhanced nutrient uptake and yield, with an increase of up to 56 % in yams and over 18 % in sweet potato. Biocontrol agents like Trichoderma harzianum and Streptomyces spp. reduced disease incidence and improved tuber quality. In cassava, combining Oso Bio-Degrader (OBD) biofertilizer (4 t/ha) with NPK (300 kg/ha) resulted in a maximum yield of 31.2 t/ha. Sweet potato trials showed that using Pseudomonas fluorescens with reduced fertilizer inputs-maintained yields close to those under full NPK doses. Bioinoculants also improved tuber nutritional quality and reduced postharvest losses. Application methods such as seed coating, root dipping and incorporation into organic amendments enhanced efficacy and field performance. The findings highlight the significant potential of bioinoculants in boosting tuber crop productivity while reducing reliance on synthetic agrochemicals.

References

  1. 1. Reddy PP. Plant protection in tropical root and tuber crops. New Delhi: Springer; 2015. https://doi.org/10.1007/978-81-322-2389-4_1
  2. 2. Prakash P, Jaganathan D, Immanuel S, Sivakumar P. Analysis of global and national scenario of tuber crops production: trends and prospects. Indian J Econ Dev. 2020;16(4):500-10. https://doi.org/10.35716/IJED/20108
  3. 3. Maitra S, Brestic M, Bhadra P, Shankar T, Praharaj S, Palai JB. Bioinoculants-natural biological resources for sustainable plant production. Microorganisms. 2021;10(1):51. https://doi.org/10.3390/microorganisms10010051
  4. 4. Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress in Pisum sativum via modulation of antioxidant defense. BMC Plant Biol. 2018;18:1-18. https://doi.org/10.1186/s12870-018-1359-5
  5. 5. Kaya C, Akram NA, Ashraf M, Alyemeni MN, Ahmad P. Silicon improves cadmium tolerance in pepper by inducing nitric oxide and hydrogen sulfide synthesis. J Biotechnol. 2020;316:35-45. https://doi.org/10.1016/j.jbiotec.2020.04.008
  6. 6. Herencia JF, Ruiz-Porras J, Melero S, Garcia-Galavis P, Morillo E, Maqueda C. Comparison between organic and mineral fertilization for soil fertility levels and crop yield. Agron J. 2007;99(4):973-83. https://doi.org/10.2134/agronj2006.0168
  7. 7. Collins H, Porter L, Boydston R, Alva A, Cordoba BC. Petiole NPK concentrations and yield of potato cultivar molli under organic and conventional fertilization. Commun Soil Sci Plant Anal. 2016;47(10):1227-38. https://doi.org/10.1080/00103624.2016.1166247
  8. 8. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255(2):571-86. https://doi.org/10.1023/A:1026037216893
  9. 9. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact. 2014;13(1):66. https://doi.org/10.1186/1475-2859-13-66
  10. 10. Pedraza RO. Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol. 2008;125(1):25-35. https://doi.org/10.1016/j.ijfoodmicro.2007.11.079
  11. 11. Kader M, Mian MH, Hoque M. Effects of Azotobacter inoculant on wheat yield and nitrogen uptake. J Biol Sci. 2002;2(4):259-61. https://doi.org/10.3923/jbs.2002.259.261
  12. 12. James E. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 2000;65(2-3):197-209. https://doi.org/10.1016/S0378-4290(99)00087-8
  13. 13. Fernandes AM, da Silva JA, Eburneo JA, Leonel M, Garreto FG, Nunes JG. Growth and nitrogen uptake by potato and cassava crops can be improved by Azospirillum brasilense inoculation and nitrogen fertilization. Horticulturae. 2023;9(3):301. https://doi.org/10.3390/horticulturae9030301
  14. 14. Wang Z, Li Y, Zhao Y, Zhuang L, Yu Y, Wang M, et al. A microbial consortium-based product promotes potato yield by recruiting rhizosphere bacteria involved in nitrogen and carbon metabolisms. Microb Biotechnol. 2021;14(5):1961-75. https://doi.org/10.1111/1751-7915.13876
  15. 15. Mehmood T, Li G, Anjum T, Akram W. Azospirillum lipoferum strain AL-3 reduces early blight disease of potato and enhances yield. Crop Prot. 2021;139:105349. https://doi.org/10.1016/j.cropro.2020.105349
  16. 16. Nasiiri A. The response of potato mini tubers to the use of plant growth promoting bacteria in field conditions. Int J Food Sci Agric. 2023;7(3):413-9. https://doi.org/10.26855/ijfsa.2023.09.013
  17. 17. Vendruscolo E, Lima S. The Azospirillum genus and the cultivation of vegetables: a review. Biotechnol Agron Soc Environ. 2021;25:236-46. https://doi.org/10.25518/1780-4507.19175
  18. 18. Sharma A, Johri B, Gianinazzi S. Vesicular-arbuscular mycorrhizae in relation to plant disease. World J Microbiol Biotechnol. 1992;8:559-63. https://doi.org/10.1007/BF01238788
  19. 19. Pacheco I, Ferreira R, Correia P, Carvalho L, Dias T, Cruz C. Microbial consortium improves maize productivity and reduces phosphorus concentration. Saudi J Biol Sci. 2021;28(1):232-7. https://doi.org/10.1016/j.sjbs.2020.09.053
  20. 20. Lu F, Lee C, Wang C. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. PeerJ. 2015;3:e1266. https://doi.org/10.7717/peerj.1266
  21. 21. Hijri M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza. 2016;26(3):209-14. https://doi.org/10.1007/s00572-015-0661-4
  22. 22. Oladele S, Gould I, Varga S. Is arbuscular mycorrhizal fungal addition beneficial to potato systems? A meta-analysis. Mycorrhiza. 2024;35(1):5. https://doi.org/10.1007/s00572-024-01178-0
  23. 23. Deja-Sikora E, Kowalczyk A, Trejgell A, Szmidt-Jaworska A, Baum C, Mercy L, et al. Arbuscular mycorrhiza changes the impact of Potato virus Y on growth and stress tolerance of Solanum tuberosum L. in vitro. Front Microbiol. 2020;10:2971. https://doi.org/10.3389/fmicb.2019.02971
  24. 24. Manck-Götzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci. 2016;7:487. https://doi.org/10.3389/fpls.2016.00487
  25. 25. Nahuelcura J, Ortega T, Peña F, Berríos D, Valdebenito A, Contreras B, et al. Antioxidant response, phenolic compounds and yield of Solanum tuberosum tubers inoculated with arbuscular mycorrhizal fungi and growing under water stress. Plants. 2023;12(24):4171. https://doi.org/10.3390/plants12244171
  26. 26. Mukhongo RW, Tumuhairwe JB, Ebanyat P, AbdelGadir AH, Thuita M, Masso C. Combined application of biofertilizers and inorganic nutrients improves sweet potato yields. Front Plant Sci. 2017;8:219. https://doi.org/10.3389/fpls.2017.00219
  27. 27. Sakha MA, Jefwa J, Gweyi-Onyango JP. Effects of arbuscular mycorrhizal fungal inoculation on growth and yield of two sweet potato varieties. J Agric Ecol Res Int. 2019;18(3):1-8. https://doi.org/10.9734/jaeri/2019/v18i330063
  28. 28. Yuan J, Shi K, Zhou X, Wang L, Xu C, Zhang H, et al. Interactive impact of potassium and arbuscular mycorrhizal fungi on the root morphology and nutrient uptake of sweet potato (Ipomoea batatas L.). Front Microbiol. 2023;13:1075957. https://doi.org/10.3389/fmicb.2022.1075957
  29. 29. Frey-Klett P, Pierrat JC, Garbaye J. Location and survival of mycorrhiza helper Pseudomonas fluorescens during ectomycorrhizal symbiosis. Appl Environ Microbiol. 1997;63(1):139-44. https://doi.org/10.1128/aem.63.1.139-144.1997
  30. 30. Chinmay J, Manish S. A correlational analysis of the phosphate solubilising bacteria on the growth rate of Lady Rosetta potato. Curr Agri Res J. 2022;10(3). https://doi.org/10.12944/CARJ.10.3.11
  31. 31. Pantigoso HA, He Y, Manter DK, Vivanco JM, Pantigoso E, Medina J, et al. Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bull Natl Res Cent. 2022;46:224. https://doi.org/10.1186/s42269-022-00913-x
  32. 32. Lin L, Li C, Ren Z, Qin Y, Wang R, Wang J, et al. Transcriptome profiling of genes regulated by phosphate-solubilizing bacteria Bacillus megaterium P68 in potato (Solanum tuberosum L.). Front Microbiol. 2023;14:1140752. https://doi.org/10.3389/fmicb.2023.1140752
  33. 33. Marques JM, Mateus JR, da Silva TF, Couto CRA, Blank AF, Seldin L. Nitrogen fixing and phosphate mineralizing bacterial communities in sweet potato rhizosphere show a genotype-dependent distribution. Diversity. 2019;11(12):231. https://doi.org/10.3390/d11120231
  34. 34. Sarwar A, Latif Z, Zhang S, Zhu J, Zechel DL, Bechthold A. Biological control of potato common scab with rare isatropolone C compound produced by plant growth promoting Streptomyces A1RT. Front Microbiol. 2018;9:1126. https://doi.org/10.3389/fmicb.2018.01126
  35. 35. Zhang XY, Li C, Hao JJ, Li YC, Li DZ, Zhang DM, et al. A novel Streptomyces sp. strain PBSH9 for controlling potato common scab caused by Streptomyces galilaeus. Plant Dis. 2020;104(7):1986-93. https://doi.org/10.1094/PDIS-07-19-1469-RE
  36. 36. Nasr-Eldin M, Messiha N, Othman B, Megahed A, Elhalag K. Induction of potato systemic resistance against the potato virus Y (PVYNTN), using crude filtrates of Streptomyces spp. under greenhouse conditions. Egypt J Biol Pest Control. 2019;29(1):62. https://doi.org/10.1186/s41938-019-0165-1
  37. 37. Li X, Li B, Cai S, Zhang Y, Xu M, Zhang C, et al. Identification of rhizospheric actinomycete Streptomyces lavendulae SPS-33 and the inhibitory effect of its volatile organic compounds against Ceratocystis fimbriata in postharvest sweet potato (Ipomoea batatas (L.) Lam.). Microorganisms. 2020;8(3):319. https://doi.org/10.3390/microorganisms8030319
  38. 38. Monte E. Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol. 2001;4(1):1-4. https://pubmed.ncbi.nlm.nih.gov/11770814/
  39. 39. Jeffries P, Young TW. Inter fungal parasitic relationships. Mycol Res. 1994;98(4):409-11. https://doi.org/10.1016/S0275-0287(08)80045-8
  40. 40. Ranasingh N, Saurabh A, Nedunchezhiyan M. Use of Trichoderma in disease management. Orissa Rev. 2006;63(2-3):68-70.
  41. 41. Napolitano A, Senatore M, Coluccia S, Palomba F, Castaldo M, Spasiano T, et al. Development and evaluation of a Trichoderma-based bioformulation for enhancing sustainable potato cultivation. Horticulturae. 2024;10(7):664. https://doi.org/10.3390/horticulturae10070664
  42. 42. Wang Z, Li Y, Zhuang L, Yu Y, Liu J, Zhang L, et al. A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield. Comput Struct Biotechnol J. 2019;17:645-53. https://doi.org/10.1016/j.csbj.2019.05.003
  43. 43. Aseel DG, Soliman SA, Al-Askar AA, Elkelish A, Elbeaino T, Abdelkhalek A. Trichoderma viride isolate Tvd44 enhances potato growth and stimulates the defense system against potato virus Y. Horticulturae. 2023;9(6):716. https://doi.org/10.3390/horticulturae9060716
  44. 44. Dania VO. Bioefficacy of Trichoderma species against important fungal pathogens causing post-harvest rot in sweet potato (Ipomoea batatas (L.) Lam): bioefficacy of Trichoderma metabolites of sweetpotato. J Bangladesh Agric Univ. 2019;17(4):446-53. https://doi.org/10.3329/jbau.v17i4.44604
  45. 45. Ahmad ZM, Afshar MH, Javan NM, Sharifi TA. Molecular traits in fluorescent pseudomonads with antifungal activity. Iran J Biotechnol. 2006;4(3):165-73. https://www.sid.ir/EN/VEWSSID/J_pdf/92820060405.pdf
  46. 46. Dowling DN, O'Gara F. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 1994;12(4):133-41. https://doi.org/10.1016/0167-7799(94)90091-4
  47. 47. Rodríguez H, Fraga R, Gonzalez T, Bashan Y. Genetics of phosphate solubilization and applications for plant growth–promoting bacteria. Plant Soil. 2006;287:15-21. https://doi.org/10.1007/s11104-006-9056-9
  48. 48. Léger G, Novinscak A, Biessy A, Lamarre S, Filion M. In tuber biocontrol of potato late blight by a collection of phenazine-1-carboxylic acid-producing Pseudomonas spp. Microorganisms. 2021;9(12):2525. https://doi.org/10.3390/microorganisms9122525
  49. 49. Lal M, Kumar A, Chaudhary S, Singh RK, Sharma S, Kumar M. Antagonistic and growth enhancement activities of native Pseudomonas spp. against soil and tuber-borne diseases of potato (Solanum tuberosum L.). Egypt J Biol Pest Control. 2022;32(1):22. https://doi.org/10.1186/s41938-022-00522-w
  50. 50. Lal M, Yadav S, Singh V. The use of bio-agents for management of potato. Plant Growth. 2016;1. https://doi.org/10.5772/64853
  51. 51. Santana-Fernández A, Beovides-García Y, Simó-González JE, Pérez-Peñaranda MC, López-Torres J, Rayas-Cabrera A, et al. Effect of a Pseudomonas fluorescens-based biofertilizer on sweet potato yield components. Asian J Appl Sci. 2021;9(2). https://doi.org/10.31031/EAES.2021.08.000692
  52. 52. Marques JM, da Silva TF, Vollu RE, Blank AF, Ding GC, Seldin L, et al. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol. 2014;88(2):424-35. https://doi.org/10.1111/1574-6941.12313
  53. 53. Nagy VD, Zhumakayev A, Vörös M, Bordé Á, Szarvas A, Szűcs A, et al. Development of a multicomponent microbiological soil inoculant and its performance in sweet potato cultivation. Microorganisms. 2023;11(4):914. https://doi.org/10.3390/microorganisms11040914
  54. 54. Sudakin DL. Biopesticides. Toxicol Rev. 2003;22:83-90. https://doi.org/10.2165/00139709-200322020-00003
  55. 55. Shuang M, Wang Y, Teng W, Jin G. Isolation and identification of an endophytic bacteria Bacillus sp. K-9 exhibiting biocontrol activity against potato common scab. Arch Microbiol. 2022;204(8):483. https://doi.org/10.1007/s00203-022-02989-5
  56. 56. Maslennikova VS, Tsvetkova VP, Shelikhova EV, Selyuk MP, Alikina TY, Kabilov MR, et al. Bacillus subtilis and Bacillus amyloliquefaciens mix suppresses rhizoctonia disease and improves rhizosphere microbiome, growth and yield of potato (Solanum tuberosum L.). J Fungi. 2023;9(12):1142. https://doi.org/10.3390/jof9121142
  57. 57. Lastochkina O, Pusenkova L, Garshina D, Kasnak C, Palamutoglu R, Shpirnaya I, et al. Improving the biocontrol potential of endophytic bacteria Bacillus subtilis with salicylic acid against Phytophthora infestans-caused postharvest potato tuber late blight and impact on stored tubers quality. Horticulturae. 2022;8(2):117. https://doi.org/10.3390/horticulturae8020117
  58. 58. Amin HA, El Kammar HF, Saied SM, Soliman AM. Effect of Bacillus subtilis on potato virus Y (PVY) disease resistance and growth promotion in potato plants. Eur J Plant Pathol. 2023;167(4):743-58. https://doi.org/10.1007/s10658-023-02774-0
  59. 59. Uysa A, Kantar F. Effect of Bacillus subtilis and Bacillus amyloliquefaciens culture on the growth and yield of off-season potato (Solanum tuberosum L.). Acta Agron. 2020;69(1):26-31. https://doi.org/10.15446/acag.v69n1.73832
  60. 60. Abdirahman SH, Joseph MJ, Kimurto PK, Nyongesa M. Efficacy of biofertilizers and farmyard manure in management of late blight (Phytophthora infestans) and yield of potato. World. 2023;11(2):59-67. https://doi.org/10.12691/wjar-11-2-4
  61. 61. Mateus JR, Dal’Rio I, Jurelevicius D, da Mota FF, Marques JM, Ramos RT, et al. Bacillus velezensis T149-19 and Bacillus safensis T052-76 as potential biocontrol agents against foot rot disease in sweet potato. Agriculture. 2021;11(11):1046. https://doi.org/10.3390/agriculture11111046
  62. 62. Bernardes MB, Dal’Rio I, Coelho MR, Seldin L. Response of sweet potato cultivars to Bacillus velezensis T149-19 and Bacillus safensis T052-76 used as biofertilizers. Heliyon. 2024;10(14):e34377. https://doi.org/10.1016/j.heliyon.2024.e34377
  63. 63. Aydi Ben Abdallah R, Hassine M, Jabnoun-Khiareddine H, Daami-Remadi M. Exploration of non-phytopathogenic Aspergillus spp. isolates recovered from soil and compost as potential source of bioactive metabolites for potato Fusarium dry rot control. Braz J Microbiol. 2023;54(2):1103-13. https://doi.org/10.1007/s42770-023-00925-3
  64. 64. Mejdoub-Trabelsi B, Rania A, Nawaim A, Mejda Daami R. Antifungal potential of extracellular metabolites from Penicillium spp. and Aspergillus spp. naturally associated to potato against Fusarium species causing tuber dry rot. J Microb Biochem Technol. 2017;9:181-90. https://doi.org/10.4172/1948-5948.1000364
  65. 65. Bhadra S, Chettri D, Verma AK. Microbes in fructo oligosaccharides production. Bioresour Technol Rep. 2022;20:101159. https://doi.org/10.1016/j.biteb.2022.101159
  66. 66. Lalaymia I, Naveau F, Arguelles Arias A, Ongena M, Picaud T, Declerck S, et al. Screening and efficacy evaluation of antagonistic fungi against Phytophthora infestans and combination with arbuscular mycorrhizal fungi for biocontrol of late blight in potato. Front Agron. 2022;4:948309. https://doi.org/10.3389/fagro.2022.948309
  67. 67. Malusá E, Sas-Paszt L, Ciesielska J. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J. 2012;2012:491206. https://doi.org/10.1100/2012/491206
  68. 68. Lopes MJ, Dias-Filho MB, Gurgel ES. Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front Sustain Food Syst. 2021;5:606454. https://doi.org/10.3389/fsufs.2021.606454
  69. 69. Naamala J, Smith DL. Relevance of plant growth-promoting microorganisms and their derived compounds, in the face of climate change. Agronomy. 2020;10(8):1179. https://doi.org/10.3390/agronomy10081179
  70. 70. Díaz-Rodríguez AM, Parra Cota FI, Cira Chávez LA, García Ortega LF, Estrada Alvarado MI, Santoyo G, et al. Microbial inoculants in sustainable agriculture: advancements, challenges and future directions. Plants. 2025;14(2):191. https://doi.org/10.3390/plants14020191
  71. 71. Naik K, Mishra S, Srichandan H, Singh PK, Choudhary A. Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustain Environ Res. 2020;30(1):10. https://doi.org/10.1186/s42834-020-00051-x
  72. 72. Ghorui M, Chowdhury S, Burla S. Recent advances in the commercial formulation of arbuscular mycorrhizal inoculants. Front Ind Microbiol. 2025;3:1553472. https://doi.org/10.3389/finmi.2025.1553472
  73. 73. Balla A, Silini A, Cherif-Silini H, Chenari Bouket A, Alenezi FN, Belbahri L. Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in the sustainable agriculture. Appl Sci. 2022;12(18):9020. https://doi.org/10.3390/app12189020
  74. 74. Cruz-Barrera M, Chaparro M, Mendoza J, Torres-Cuesta D, Gómez M, Estrada-Bonilla GA. Hydrogel capsules as carriers for PGPB consortia enhance compost efficacy and nutrient uptake in oat (Avena sativa) fertilization. Plant Soil. 2025:1-5. https://doi.org/10.1007/s11104-025-07454-y
  75. 75. Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. Geomicrobiol J. 2019;36(10):904-16. https://doi.org/10.1080/01490451.2019.1654043
  76. 76. Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18(3):152-63. https://doi.org/10.1038/s41579-019-0284-4
  77. 77. Pandey S, Gupta S. Evaluation of Pseudomonas sp. for its multifarious growth-promoting potential and stress alleviation in tomato. Sci Rep. 2020;10(1):20951. https://doi.org/10.1038/s41598-020-77850-0
  78. 78. Rillig MC, Lehmann A, Lehmann J, Camenzind T, Rauh C. Soil biodiversity effects from field to fork. Trends Plant Sci. 2018;23(1):17-24. https://doi.org/10.1016/j.tplants.2017.10.003
  79. 79. Fröhlich A, Buddrus-Schiemann K, Durner J, Hartmann A, Von Rad U. Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 in various conditions. J Plant Interact. 2012;7(1):1-9. https://doi.org/10.1080/17429145.2011.597002
  80. 80. Zhao S, Wei H, Lin C-Y, Zeng Y, Tucker MP, Himmel ME, et al. Burkholderia phytofirmans-induced shoot anatomy and iron accumulation in Arabidopsis. Front Plant Sci. 2016;7:24. https://doi.org/10.3389/fpls.2016.00024
  81. 81. Pawar S, Chaudhari A, Prabha R, Shukla R, Singh DP. Microbial pyrrolnitrin: natural metabolite with practical utility. Biomolecules. 2019;9(9):443. https://doi.org/10.3390/biom9090443
  82. 82. Wan C, Fan X, Lou Z, Wang H, Olatunde A, Rengasamy KR. Iturin: cyclic lipopeptide with multifunctional potential. Crit Rev Food Sci Nutr. 2022;62(29):7976-88. https://doi.org/10.1080/10408398.2021.1922355
  83. 83. Pérez-Equihua A, Santoyo G. Draft genome of Bacillus sp. strain E25 from Physalis ixocarpa roots. Microbiol Resour Announc. 2021;10(1):e01112-20. https://doi.org/10.1128/MRA.01112-20
  84. 84. Vázquez-Chimalhua E, Valencia-Cantero E, López-Bucio J, Ruiz-Herrera LF. N,N-dimethyl-hexadecylamine modulates Arabidopsis root growth via stem cell niche balance. Gene Expr Patterns. 2021;41:119201. https://doi.org/10.1016/j.gep.2021.119201
  85. 85. Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A. Trichoderma species: versatile plant symbionts. Phytopathology. 2019;109(1):6-16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW
  86. 86. Mukherjee PK, Mendoza-Mendoza A, Zeilinger S, Horwitz BA. Mycoparasitism in Trichoderma-mediated suppression of plant diseases. Fungal Biol Rev. 2022;39:15-33. https://doi.org/10.1016/j.fbr.2021.11.004
  87. 87. Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Features of PGPR for improving plant growth under stress. Sci Total Environ. 2020;743:140682. https://doi.org/10.1016/j.scitotenv.2020.140682
  88. 88. Fadiji AE, Babalola OO. Mechanisms of endophytes used in plant protection. Front Bioeng Biotechnol. 2020;8:467. https://doi.org/10.3389/fbioe.2020.00467
  89. 89. Santiago CD, Yagi S, Ijima M, Nashimoto T, Sawada M, Ikeda S, et al. Bacterial compatibility in combined inoculations enhances potato seedling growth. Microbes Environ. 2017;32(1):14-23. https://doi.org/10.1264/jsme2.ME16127
  90. 90. Dawwam G, Elbeltagy A, Emara H, Abbas I, Hassan M. PGPR from potato roots: beneficial effects on growth. Ann Agric Sci. 2013;58(2):195-201. https://doi.org/10.1016/j.aoas.2013.07.007
  91. 91. Verma P, Agrawal N, Shahi SK. Effect of rhizobacterial strain Enterobacter cloacae strain PGLO9 on potato plant growth and yield. Plant Arch. 2018;18(2):2528-32.
  92. 92. Papp O, Kocsis T, Biró B, Jung T, Ganszky D, Abod É, et al. Co-inoculation of organic potato with fungi and bacteria at high disease severity of Rhizoctonia solani and Streptomyces spp. increases beneficial effects. Microorganisms. 2021;9(10):2028. https://doi.org/10.3390/microorganisms9102028
  93. 93. Saini I, Kaushik P, Al-Huqail AA, Khan F, Siddiqui MH. Effect of the diverse combinations of useful microbes and chemical fertilizers on important traits of potato. Saudi J Biol Sci. 2021;28(5):2641-8. https://doi.org/10.1016/j.sjbs.2021.02.070
  94. 94. Padmavathiamma PK, Li LY, Kumari UR. An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresour Technol. 2008;99(6):1672-81. https://doi.org/10.1016/j.biortech.2007.03.024
  95. 95. Hridya AC, Byju G, Misra RS. Effect of biocontrol agents and biofertilizers on root rot, yield, harvest index and nutrient uptake of cassava (Manihot esculenta Crantz). Arch Agron Soil Sci. 2013;59(9):1215-27. https://doi.org/10.1080/03650340.2012.702896
  96. 96. Saad S, Salem E. Water needs of potatoes under bioinoculated sandy soil. Middle East J Agric Res. 2020;9(4):796-811. https://doi.org/10.36632/mejar/2020.9.4.63
  97. 97. Otaiku AA, Mmom P, Ano A. Biofertilizer impacts on cassava rhizosphere: yield and growth. World J Agric Soil Sci. 2019;3(5). https://doi.org/10.33552/WJASS.2019.03.000575
  98. 98. Mukhongo RW, Tumuhairwe JB, Ebanyat P, AbdelGadir AH, Thuita M, Masso C. Biofertilizers and inorganic nutrients improve sweet potato yield. Front Plant Sci. 2017;8:219. https://doi.org/10.3389/fpls.2017.00219
  99. 99. Hindersah R, Karuniawan A, Apriliana A. Reducing chemical fertilizer in sweet potato cultivation by using mixed biofertilizer. Iraqi J Agric Sci. 2021;52(4). Available from: https://pdfs.semanticscholar.org/121a/8c30f0c511596bbf0fc7adddc56980ebe84c.pdf
  100. 100. Liswadiratanakul S, Yamamoto K, Matsutani M, et al. Endophyte replacement in water yam via synthetic nitrogen-fixing community. Front Microbiol. 2023;14:1060239. https://doi.org/10.3389/fmicb.2023.1060239
  101. 101. Navya K, Desai KD, Tandel YN, Sheth SG. Response of elephant foot yam to different INM sources and its effect on economics and soil health. J Pharmacogn Phytochem. 2017;6(1):246-51.
  102. 102. Singh R, Kalra A, Ravish BS, Divya S, Parameswaran TN, Srinivas KVNS, et al. Effect of potential bioinoculants and organic manures on root-rot and wilt, growth, yield and quality of organically grown Coleus forskohlii in a semiarid tropical region of Bangalore (India). Plant Pathol. 2012;61(4):700-8. https://doi.org/10.1111/j.1365-3059.2011.02567.x
  103. 103. Singh R, Kalra A, Ravish B, et al. Effect of bioinoculants and organic manures on Coleus forskohlii under semi-arid tropics. Plant Pathol. 2012;61(4):700-8. https://doi.org/10.1111/j.1365-3059.2011.02567.x
  104. 104. Sakthivel U, Karthikeyan B. Effect of AM fungi and PGPR on Coleus forskohlii growth and yield. In: PGPR in medicinal plants. Cham: Springer; 2015:89-107. https://doi.org/10.1007/978-3-319-13401-7_5
  105. 105. Boby V, Bagyaraj D. Biocontrol of root rot in Coleus forskohlii using microbial inoculants. World J Microbiol Biotechnol. 2003;19:175-80. https://doi.org/10.1023/A:1023238908028
  106. 106. Schütz L, Gattinger A, Meier M, Müller A, Boller T, Mäder P, et al. Improving crop yield and nutrient use efficiency via biofertilization—a global meta-analysis. Front Plant Sci. 2018;8:2204. https://doi.org/10.3389/fpls.2017.02204
  107. 107. Herrmann L, Lesueur D. Challenges in biofertilizer formulation for inoculation success. Appl Microbiol Biotechnol. 2013;97(20):8859-73. https://doi.org/10.1007/s00253-013-5228-8
  108. 108. Malusá E, Vassilev N. A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol. 2014;98:6599-607. https://doi.org/10.1007/s00253-014-5828-y
  109. 109. Romano I, Ventorino V, Pepe O. Effectiveness of plant beneficial microbes: overview of approaches to assess root colonization and persistence. Front Plant Sci. 2020;11:6. https://doi.org/10.3389/fpls.2020.00006
  110. 110. Kumutha K, Devi RP, Marimuthu P, Krishnamoorthy R. Shelf life studies of seed coat formulation of Rhizobium and arbuscular mycorrhizal fungus (AMF) for pulses—a new perspective in biofertilizer technology. Indian J Agric Res. 2023;57(1):89-94. https://doi.org/10.18805/IJARe.A-5543
  111. 111. Itamah E, Bello TK, Waziri SM, Ugwueke S. A comprehensive review on biofertilizers: mechanisms, applications and challenges. Prog Petrochem Sci. 2025;7. https://doi.org/10.31031/PPS.2025.07.000655
  112. 112. Salomon MJ, Watts-Williams SJ, McLaughlin MJ, Bücking H, Singh BK, Hutter I, et al. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. iScience. 2022;25(7):104636. https://doi.org/10.1016/j.isci.2022.104636
  113. 113. Joshi SK, Gauraha AK. Global biofertilizer market: emerging trends and opportunities. In: Trends in applied microbiology for a sustainable economy. London: Elsevier; 2022:689-97. https://doi.org/10.1016/B978-0-323-91595-3.00024-0
  114. 114. Kumawat K, Nagpal S, Sharma P. Present scenario of bio-fertilizer production and marketing around the globe. In: Biofertilizers. Amsterdam: Elsevier; 2021. p.389-413. doi:10.1016/B978-0-12-821667-5.00028-2
  115. 115. Alnaass NS, Agil HK, Alyaseer NA, Abubaira M, Ibrahim HK. Effect of biofertilization on plant growth and role in reducing soil pollution from chemical fertilizers. Afr J Adv Pure Appl Sci. 2023:387-400. https://aaasjournals.com/index.php/ajapas/article/view/515
  116. 116. Sharma P, Bano A, Singh SP, Tong YW. Microbial inoculants: recent progress in formulations and methods of application. In: Microbial inoculants. London: Elsevier; 2023:1-28. https://aaasjournals.com/index.php/ajapas/article/view/515
  117. 117. Stephens J, Rask H. Inoculant production and formulation. Field Crops Res. 2000;65(2-3):249-58. https://doi.org/10.1016/B978-0-323-99043-1.00017-7
  118. 118. Patle T, Tomar B, Tomar SS, Parihar SS, Kumar M. Role of microorganisms in soil health and nutrient cycling. Monthly Peer-Reviewed Magazine for Agriculture and Allied Sciences. 2023;19. https://doi.org/10.1016/S0378-4290(99)00090-8
  119. 119. Aloo BN, Mbega ER, Tumuhairwe JB, Makumba BA. Advancement and practical applications of rhizobacterial biofertilizers for sustainable crop production in sub-Saharan Africa. Agric Food Secur. 2021;10(1):57. https://doi:10.1186/s40066-021-00345-w
  120. 120. dos Reis GA, Martínez-Burgos WJ, Pozzan R, Pastrana Puche Y, Ocán-Torres D, de Queiroz Fonseca Mota P, et al. Comprehensive review of microbial inoculants: agricultural applications, technology trends in patents and regulatory frameworks. Sustainability. 2024;16(19):8720. https://doi.org/10.1186/s40066-021-00333-6
  121. 121. Samantaray A, Chattaraj S, Mitra D, Ganguly A, Kumar R, Gaur A, et al. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Curr Res Microb Sci. 2024;7:100251. https://doi.org/10.3390/su16198720
  122. 122. Karnwal A, Dohroo A, Malik T. Unveiling the potential of bioinoculants and nanoparticles in sustainable agriculture for enhanced plant growth and food security. Biomed Res Int. 2023;2023:6911851. https://doi.org/10.1016/j.crmicr.2024.100251
  123. 123. Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints and prospects. Sustainability. 2021;13(3):1140. https://doi.org/10.1155/2023/6911851

Downloads

Download data is not yet available.