Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Biofertilizer pellets as a strategy to enhance soil nutrient dynamics and microbial populations in mulberry (Morus indica L.) cultivation

DOI
https://doi.org/10.14719/pst.9523
Submitted
19 May 2025
Published
16-07-2025 — Updated on 24-07-2025
Versions

Abstract

Organic pelleted fertilizers are vital for enhancing soil health and increasing microbial populations in mulberry (Morus indica L.) cultivation. They supply essential nutrients, improve soil structure, promote microbial activity and contributing to sustainable sericulture. This study evaluated the impact of pelleted biofertilizers on soil quality through a factorial pot experiment in a greenhouse using a randomized complete block design. Treatments included combinations of Orgafol, biofertilizers (Azospirillum, phosphobacteria, arbuscular mycorrhizal fungi-AMF) and growth promoters. Soil pH, electrical conductivity (EC), available N, P, K and culturable microbial populations were measured 90 days after planting. Orgafol + Azospirillum + AMF (T10) produced the highest EC (0.62 dS m-1) and the lowest pH (6.48), whereas Orgafol alone maintained the highest pH (6.67). Nitrogen was maximised by Orgafol + naphthaleneacetic acid (NAA) + Azospirillum + AMF, phosphorus by Orgafol + phosphobacteria (13.32 kg ha-1) and potassium by Orgafol + NAA + Azospirillum (228.98 kg ha-1). Biofertilizer pellets markedly increased total microbial counts, peaking in Orgafol + NAA + Azospirillum + AMF + phosphobacteria (T9). PCA (principal component analysis)
identified two principal components accounting for 73.27 % of the total variance. PC1 was strongly correlated with microbial counts and negatively with pH, while PC2 was associated with EC, phosphorus and potassium levels. Treatments T9 and T10 ranked highest in PC1 and T6 dominated PC2, highlighting their effectiveness in enhancing soil fertility. The study demonstrates that tailored pelleted biofertilizer blends can rapidly improve physicochemical properties and biological activity of mulberry soils, offering a scalable strategy for more sustainable and productive sericulture.

References

  1. 1. Ramalakshmi A, Iniyakumar M, Raj SA. Influence of biofertilizers on soil physico-chemical and biological properties during cropping period. Asian J Bio Sci. 2008;3(2):348-51.
  2. 2. Mary LCL, Sujatha R, Chozhaa AJ, Navas PMA. Influence of organic manures (biofertilizers) on soil microbial population in the rhizosphere of mulberry (Morus indica L.). Int J Appl Sci Biotechnol. 2015;3(1):61-66. https://doi.org/10.3126/ijasbt.v3i1.12137
  3. 3. Singh M, Chauhan A, Srivastava DK, Singh PK. Unveiling arbuscular mycorrhizal fungi: The hidden heroes of soil to control the plant pathogens. Arch Phytopathol Plant Protect. 2024;57(1):427-57. https://doi.org/10.1080/03235408.2024.2368112
  4. 4. Ravanachandar A, Lakshmanan V. Effect of organic and biofertilizers practices on soil microbial population in black pepper (Piper nigrum L.). Int J Chemi Stud. 2019;7(4):44-45.
  5. 5. Shashidhar KR, Narayanaswamy TK, Sudhakar SN, Bhaskar RN. Impact of different sources of organic nutrients on chemical composition of S-36 mulberry and soil under irrigated condition. Int J Curr Microbiol Appl Sci. 2018;7:2233–38. https://doi.org/10.20546/ijcmas.2018.701.269
  6. 6. Dagar JC, Archna Gautam AG. Organic amendments in saline agriculture. An in-house J Agric Fin Corp Ltd. 2004;4:31-37.
  7. 7. Izquierdo I, Caravaca F, Alguacil MM, Hernández G, Roldán A. Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl Soil Ecol. 2005;30(1):3-10. https://doi.org/10.1016/j.apsoil.2005.02.004
  8. 8. Ansabayeva A, Makhambetov M, Rebouh NY, Abdelkader M, Saudy HS, Hassan KM, et al. Plant growth-promoting microbes for resilient farming systems: Mitigating environmental stressors and boosting crops productivity—A review. Horticulturae. 2025.28;11(3):260. https://doi.org/10.3390/horticulturae11030260
  9. 9. Alladi A, Kala KS, Udayasankar A, Thakur KD. Influence of biofertilizers on uptake of NPK in soils and eggplant. Int J Curr Microbiol Appl Sci. 2017;6(12):1259-63. https://doi.org/10.20546/ijcmas.2017.612.142
  10. 10. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255:571-86. https://doi.org/10.1023/A:1026037216893
  11. 11. Thirumal G, Subhash RR, Triveni S, Bhaveet MV. Effects of irradiated carriers, storage temperatures, on Rhizobium bio inoculant at different intervals. Int J Pure App Biosci. 2017;5(4):240-46. http://dx.doi.org/10.18782/2320-7051.4072
  12. 12. Trabelsi D, Mhamdi R. Microbial inoculants and their impact on soil microbial communities: A review. BioMed Res Int. 2013;863240. https://doi.org/10.1155/2013/863240
  13. 13. Davison J. Plant beneficial bacteria. Biotechnology. 1988;6(3):282-86. https://doi.org/10.1038/nbt0388-282
  14. 14. Rodrı́guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999;17(4-5):319-39. https://doi.org/10.1016/S0734-9750(99)00014-2
  15. 15. Dobereiner J, Marriel IE, Nery M. Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol. 1976;22(10):1464-73. https://doi.org/10.1139/m76-217
  16. 16. Sundaro Rao WVB, Sinha MK. Phosphate dissolving micro-organisms in the soil and rhizosphere. Indian J Agric Sci. 1963;33:272-78.
  17. 17. Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving & decanting. Transactions of the British Mycological Society. 1963;46:235-44.
  18. 18. Menge JA, Timmer LW. Procedures for inoculation of plants with vesicular-arbuscular mycorrhizae in the laboratory, greenhouse, and field. Methods and principles of mycorrhizal research. In: Schenck NC, editor. Methods and Principles of Mycorrhizal Research; 1982. p. 59-68.
  19. 19. Jackson ML. Soil chemical analysis-Advanced course. UW-Madison Libraries Parallel Press. 1969.
  20. 20. Subbiah BV, Asija GL. A rapid procedure for the estimation of available nitrogen in soils. Curr Sci. 1956;25:259-60.
  21. 21. Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture; 1954.
  22. 22. Stanford G, English L. Use of the flame photometer in rapid soil tests for K and Ca. Agron J. 1949;41:446-47. https://doi.org/10.2134/agronj1949.00021962004100090012x
  23. 23. Singh P, Bhatt R, Kaur G. Phosphorus availability in soils and use efficiency for food and environmental sustainability. In: Bhatt R, Meena RS, Hossain A, editors. Input Use efficiency for food and environmental security. Singapore: Springer;2022. p. 361-95. https://doi.org/10.1007/978-981-16-5199-1_12
  24. 24. Singh M, Chauhan A, Srivastava DK, Singh PK. Arbuscular mycorrhizal fungi promote growth and enhance the accumulation of bioactive compounds in tomato (Solanum lycopersicum L.). Biol Fut. 2024;75(2):251-57. https://doi.org/10.1007/s42977-024-00214-6
  25. 25. Yadav RD, Nagendra Kumar TD. Azospirillum–A low input biofertilizer technology for mulberry. Indian Silk. 1989;28(1):31-33.
  26. 26. Goswami NN. Concept of balanced fertilisation its relevance and practical limitations. Ferti News.1997;42:15–19.
  27. 27. Rashmi K, Shankar MA, Narayanaswamy TK, Sreeramulu KR, Rajegowda R. Impact of organic mulberry cultivation practices on soil microbes and fertility of M5 mulberry garden. J Ecobiol. 2007;21:113-16.
  28. 28. Murali C, Sreeramulu KR, Narayanaswamy TK, Shankar MA, Sreekantaiah M. Effect of bio-inoculants and organic manures on soil microflora and fertility status of S36 mulberry garden. In: National seminar on soil health and water management for sustainable sericulture. Regional Sericultural Research Station. 2006. p. 90.
  29. 29. Krotzky A, Werner D. Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol. 1987;147:48-57. https://doi.org/10.1007/BF00492904
  30. 30. Cavalcante VA, Dobereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil. 1988;108:23-31. https://doi.org/10.1007/BF02370096
  31. 31. Iyer B, Rajput MS, Rajkumar S. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chickpea and their effect on plant growth. Microbiol Res. 2017;202:43-50. https://doi.org/10.1016/j.micres.2017.05.005
  32. 32. Rajalingam GV. Studies on the effect of digested coirpith compost and biofertilizers on the soil health, growth and productivity of tea (Camellia sp.). Tamil Nadu Agricultural University; Coimbatore; 2000.
  33. 33. Krishnakumar S, Saravanan A, Natarajan SK, Veerabadran V, Mani S. Microbial population and enzymatic activity as influenced by organic farming. Res J Agric Biol Sci. 2005;1(1):85-88.
  34. 34. Aswathy T, Johny J, Dhanya M, Sathyan T, Preethy T, Murugan M. Effect of biofertilizers and organic supplements on general and beneficial microbial population in the rhizosphere of black pepper cuttings (Piper nigrum L.). Int J Chem Stud. 2017;5:1260-64.
  35. 35. Bagyaraj DJ, Menge JA. Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytol. 1978;80(3):567-73. https://doi.org/10.1111/j.1469-8137.1978.tb01588.x
  36. 36. Ferreira DF. Estatística multivariada. Editora Ufla Lavras; 2008.
  37. 37. Guedes MC, Andrade CA de, Poggiani F, Mattiazzo ME. Soil chemical properties and eucalyptus nutrition as affected by sewage sludge application. Brazilian J Soil Sci. 2006;30:267–80. https://doi.org/10.1590/S0100-06832006000200008
  38. 38. Valladares GS, Gomes EG, Soares de Mandal UK, Warrington DN, Bhardwaj AK, Bar-Tal A, et al. Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma. 2008;144(1-2):189-97.
  39. 39. Valladares GS, Gomes EG, Mello JCCB, Pereira MG, Anjos LHC dos, Ebeling AG, et al. Principal component analysis and ordinal multicriteria methods in the study of Organosols and related soils. Brazilian J Soil Sci. 2008;32:285–96. https://doi.org/10.1590/S0100-06832008000100027
  40. 40. Carvalho Junior W de, Schaefer CEGR, Chagas C da S, Fernandes Filho EI. Multivariate analysis of Argisols from the Brazilian Atlantic zone. Brazilian J Soil Sci. 2008;32:2081–90. https://doi.org/10.1590/S0100-06832008000500029
  41. 41. Nyiraneza J, N’Dayegamiye A, Chantigny MH, Laverdière MR. Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices. Soil Sci Soc Am J. 2009;73(1):317-27. https://doi.org/10.2136/sssaj2007.0374
  42. 42. Adhikari P, Shukla MK, Mexal JG, Sharma P. Assessment of the soil physical and chemical properties of desert soils irrigated with treated wastewater using principal component analysis. Soil Sci. 2011;176(7):356–66. https://doi.org/10.1097/SS.0b013e31821f4a72
  43. 43. Iezzoni AF, Pritts MP. Applications of principal components analysis to horticultural research. Hort Sci.1991;26:334-33. https://doi.org/10.21273/HORTSCI.26.4.334

Downloads

Download data is not yet available.