Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Evaluation of phenology-based insecticide strategies for fall armyworm (Spodoptera frugiperda) management in maize in India

DOI
https://doi.org/10.14719/pst.9619
Submitted
25 May 2025
Published
25-09-2025

Abstract

The invasive fall armyworm (Spodoptera frugiperda J.E. Smith) poses a significant threat to maize productivity in India, yet optimal insecticide application strategies aligned with crop phenology remain underexplored. A comprehensive field investigation was undertaken at the Maize Research Centre, Rajendranagar, Hyderabad, across three consecutive Kharif seasons (2020-2022) to assess the performance of chlorantraniliprole 18.5 % SC (soluble concentrate) (applied at 0.4 ml/L) in controlling the invasive pest Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae), commonly known as the fall armyworm (FAW), in maize. The experimental layout followed a randomized block design, incorporating multiple insecticide application timings based on crop phenology (7, 10, 14 and 20 days after germination) and pest incidence thresholds (5 % and 10 %), in addition to an untreated control for comparison.
Among the evaluated strategies, the sequential application of chlorantraniliprole at the V2 (7 DAG) and V4 (14 DAG) vegetative stages proved to be the most effective. This treatment significantly minimized FAW infestation, registering a mean infestation of only 12.33 %, along with the lowest leaf injury rating (1.98) on the modified Davis scale and the highest recorded grain yield (81.30 q/ha). A closely comparable result was achieved with applications at the V3 (10 DAG) and V5 (20 DAG) stages, which showed a slightly higher mean infestation (13.71 %) but identical leaf injury scores (1.98) and a near-equivalent grain yield (81.11 q/ha). The findings underscore the importance of timely insecticide applications during the early vegetative stages, particularly V2 and V4, to suppress FAW populations
effectively and optimize maize productivity. This research highlights the critical role of growth stage-based pest management in enhancing crop health and yield outcomes under FAW pressure.

References

  1. 1. Agrama HA, Moussa ME. Maize is the queen of cereals. J Agron Crop Sci. 1996;176(1):1–8.
  2. 2. IIMR. World maize scenario [internet]. 2024 [cited 2025 Aug 13]. Available from: https://iimr.icar.gov.in/world-maze-scenario/
  3. 3. Atwal AS, Dhaliwal GS. Agricultural pests of South Asia and their management. Ludhiana: Kalyani Publishers; 2002.
  4. 4. Casmuz A, Juárez ML, Socías MG, Murúa MG, Prieto S, Medina S, et al. Review of the host plants of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev Soc Entomol Argent. 2010;69:209–31.
  5. 5. FAO (Food and Agriculture Organization of the United Nations). Sustainable management of the fall armyworm in Africa. FAO Programme for Action. Rome, Italy: FAO; 2017 [internet]. Available from: http://www.fao.org/3/a bt417e.pdf
  6. 6. Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017;28:196–201. https://doi.org/10.1564/v28_oct_02
  7. 7. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One. 2016;11:e0165632. https://doi.org/10.1371/journal.pone.0165632
  8. 8. Montezano DG, Specht A, Sosa Gómez DR, Roque Specht VF, Sousa Silva JC, Paula Moraes SD, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol. 2018;26(2):286–300.
  9. 9. Prasanna BM, Huesing JE, Eddy R, Peschke VM. Fall armyworm in Africa: A guide for integrated pest management. 1st ed. Mexico City: CIMMYT; 2018.
  10. 10. Womack ED, Warburton ML, Williams WP. Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf feeding damage in maize. Crop Sci. 2018;58:529–39. https://doi.org/10.2135/cropsci2017.03.0155
  11. 11. Tambo JA, Day RK, Lamontagne Godwin J, Silvestri S, Beseh PK, Oppong Mensah B, et al. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: An analysis of farmers’ control actions. Int J Pest Manag. 2019;66:298–310.
  12. 12. Fatoretto JC, Michel AP, Filho MCS, Silva N. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J Integr Pest Manag. 2017;8:17. https://doi.org/10.1093/jipm/pmx011
  13. 13. Hruska AJ. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 2019;14(043):1–11. https://doi.org/10.1079/PAVSN NR201914043
  14. 14. Kansiime MK, Mugambi I, Rwomushana I, Nunda W, Lamontagne Godwin J, Rware H, et al. Farmer perception of fall armyworm (Spodoptera frugiderda J.E. Smith) and farm level management practices in Zambia. Pest Manag Sci. 2019;75:2840–50. https://doi.org/10.1002/ps.5504
  15. 15. Kalisetti VS, Reddy ML, Mallaiah B, Sreelatha D, Bhadru D, Kumar MVN, et al. Assessment of newer molecules for the management of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on maize in India. Int J Trop Insect Sci. 2024;44(4):1853–64. https://doi.org/10.1007/s42690-024-01279-5
  16. 16. Lewis SE, Silburn DM, Kookana RS, Shaw M. Pesticide behavior, fate, and effects in the tropics: An overview of the current state of knowledge. J Agric Food Chem. 2016;64:3917–24. https://doi.org/10.1021/acs.jafc.6b01320
  17. 17. Togola A, Meseka S, Menkir A, Badu Apraku B, Bouka O, Tamò M, et al. Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria. Int J Environ Res Public Health. 2018;15:849. https://doi.org/10.3390/ijerph15050849
  18. 18. Rajashekhar M, Rajashekar B, Sathyanarayana E, Keerthi MC, Kumar PV, Ramakrishna K, et al. Microbial pesticides for insect pest management: Success and risk analysis. Int J Environ Clim Chang. 2021;11:18–32.
  19. 19. Desneux N, Decourtye A, Delpuech J M. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007;52(1):81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
  20. 20. Abreu Villica Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. Environ Int. 2017;99:55–77. https://doi.org/10.1016/j.envint.2016.11.019
  21. 21. Soujanya PL, Vani Sree K, Giri GS, Mahadik S, Jat SL, Sekhar JC, et al. Intercropping in maize reduces fall armyworm Spodoptera frugiperda (JE Smith) infestation, supports natural enemies, and enhances yield. Agric Ecosyst Environ. 2024;373:109130. https://doi.org/10.1016/j.agee.2024.109130
  22. 22. Hara AH. Finding alternative ways to control alien pests—part 2: New insecticides introduced to fight old pests. Hawaii Landsc. 2000;4(1):5.
  23. 23. Shera PS, Sarao PS. Field efficacy of an insect growth regulator, buprofezin 25 SC against planthoppers infesting paddy crop. Bioscan. 2016;11:127–32.
  24. 24. Jansma JE, van Keulen H, Zadoks JC. Crop protection in the year 2000: A comparison of current policies towards agrochemical usage in four West European countries. Crop Prot. 1993;12:483–89.
  25. 25. Babendreier D, Agboyi LK, Beseh P, Osae M, Nboyine J, Ofori SEK, et al. The efficacy of alternative, environmentally friendly plant protection measures for control of fall armyworm, Spodoptera frugiperda, in maize. Insects. 2020;11:1–21. https://doi.org/10.3390/insects11040240
  26. 26. Nboyine JA, Kusi F, Yahaya I, Seidu A, Yahaya A. Effect of cultivars and insecticidal treatments on fall armyworm, Spodoptera frugiperda (J.E. Smith), infestation and damage on maize. Int J Trop Insect Sci. 2021;41:1265–75. https://doi.org/10.1007/s42690-020-00318-1
  27. 27. Davis FM, Williams WP. Visual rating scales for screening whorl stage corn for resistance to fall armyworm. Mississippi Agricultural and Forestry Experiment Station, Technical Bulletin 186, Mississippi State University, MS39762, USA; 1992.
  28. 28. Assefa F, Ayalew D. Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food Agric. 2019;5(1):1641902. https://doi.org/10.1080/23311932.2019.1641902
  29. 29. Hruska AJ, Gould F. Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): Impact of larval population level and temporal occurrence on maize yield in Nicaragua. J Econ Entomol. 1997;90(2):611–22. https://doi.org/10.1093/jee/90.2.611
  30. 30. Bernays EA, Chapman RF. Host plant selection by phytophagous insects. New York: Chapman and Hall; 1994.
  31. 31. Pannuti LER, Baldin ELL, Hunt TE, Paula Moraes SV. On plant larval movement and feeding behavior of fall armyworm (Lepidoptera: Noctuidae) on reproductive corn stages. Environ Entomol. 2016;45(1):192–200. https://doi.org/10.1093/ee/nvv159
  32. 32. Sisay B, Tefera T, Wakgari M, Ayalew G, Mendesil E. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects. 2019;10:1–14.
  33. 33. Schmutterer H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol. 1990;35(1):271–97.
  34. 34. Harrison RD, Thierfelder C, Baudron F, Chinwada P, Midega C, Schaffner U, et al. Agro ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low cost, smallholder friendly solutions to an invasive pest. J Environ Manage. 2019;243:318–30. https://doi.org/10.1016/j.jenvman.2019.05.011
  35. 35. Rajashekhar M, Rajashekar B, Reddy TP, Manikyanahalli C, Vanisree K, Ramakrishna K. Evaluation of farmers friendly IPM modules for the management of fall armyworm, Spodoptera frugiperda (JE Smith) in maize in the hot semiarid region of India. Sci Rep. 2024;14(1):7118. https://doi.org/10.1038/s41598 024 57860 y
  36. 36. Mostert J. Resistance and rotation—the value of biorationals. Int Pest Control. 2018;60(3):142–43.

Downloads

Download data is not yet available.