Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Assessment of breeding potential of determinate and indeterminate vegetable cowpea genotypes through multivariate analysis for ideotype breeding

DOI
https://doi.org/10.14719/pst.9633
Submitted
26 May 2025
Published
04-12-2025

Abstract

The development of a vegetable cowpea variety that is adaptable to diverse agricultural production systems and has a short, non-vining stem, early maturing and constant green pod bearing, medium-long, meaty pods and a high pod protein content is urgently needed. Using both determinate and indeterminate cowpea genotypes, it is necessary to identify genetically diverse parents for the creation of such a cowpea ideotype. Twenty-four vegetable cowpea genotypes involving both determinate and indeterminate types were assessed for 18 quantitative traits. Genetic variability, correlation and genetic divergence through multivariate analysis were estimated as per the standard procedure through software packages. Based on pod yield, Maharani Laffa Barbati, Kashi Nidhi and Lal Laffa were found superior irrespective of genotypes and need to be critically tested before commercialization. Plant height, branch number per plant, total pickings, marketable pod length, number of marketable pods per plant, seeds per pod, marketable pod weight and yield per plant showed high genetic coefficient of variation, heritability and genetic advance and were primarily governed by additive genetic influences. Pod weight and number of marketable pods per plant were identified as important selection indices for improvement of pod yield. Genetic diversity could not be adequately measured by geographic diversity alone. Three principal components, pod length, plant height and pod protein content, accounted for 95.60 % of the variation irrespective of genotypes, with eigenvalues greater than 1. Based on cluster analysis and scatter diagram of principal component analysis, indeterminate genotypes Asutosh, Vayjayanthi, Shweta, Arya Vaibhav Laxmi and determinate genotype Pusa Komal were found most diverse and could be used as potential donors. The future breeding strategies for the development of cowpea ideotype were discussed.

References

  1. 1. Vavilov NI. The origin, variation, immunity and breeding of cultivated plant. Crom Bot. 1951;13:364.
  2. 2. Verdcourt B. Studies in the Leguminosae-Papilionoideae for the ‘Flora of Tropical East Africa’: IV. Kew Bulletin. 1970; p. 507–69.
  3. 3. Dolinassou S, Noubissié TJB, Djirantal AK, Njintang YN. Genotype × environment interaction and kernel yield-stability of groundnut (Arachis hypogaea L.) in northern Cameroon. J App Biol Biotech. 2016;4(1):1–7. https://doi.org/10.7324/JABB.2016.40101
  4. 4. Chattopadhyay A, Rana NP, Seth T, Das S, Chatterjee S, Dutta S. Identification of selection indices and choosing of parents for vegetable cowpea (Vigna unguiculata cv-gr. sesquipedalis) breeding programme. Legume Res. 2014;37(1):19–25.
  5. 5. Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genet. 2020;21:1–16. https://doi.org/10.1186/s12863-020-00914-7
  6. 6. Edema R, Adjei EA, Ozimati AA, Tusiime SM, Badji A, Ibanda A, et al. Genetic diversity of cowpea parental lines assembled for breeding in Uganda. Plant Mol Biol Report. 2023;41(4):713–25. https://doi.org/10.1007/s11105-023-01394-6
  7. 7. Diallo S, Badiane FA, Kabkia BNPA, Diédhiou I, Diouf M, Diouf D. Genetic diversity and population structure of cowpea mutant collection using SSR and ISSR markers. Sci Rep. 2024;14(1):31833. https://doi.org/10.1038/s41598-024-83087-y
  8. 8. Ullah MZ, Bashar MK, Bhuiyan MSR, Khalequzzaman M, Hasan MJ. Interrelationship and cause-effect analysis among morpho-physiological traits in biroin rice of Bangladesh. Int J Plant Breed Genet. 2011;5:246–54. https://doi.org/10.3923/ijpbg.2011.246.254
  9. 9. Hazra P, Chattopadhaya A, Dasgupta T, Kar N, Das PK, Som MG. Breeding strategy for improving plant type, pod yield and protein content in vegetable cowpea (Vigna unguiculata). Acta Hortic. 2007;752:275–80.
  10. 10. Fraser J, Eaton GW. Application of yield component analysis to crop research. Field Crops Abstr. 1983;36:787–97.
  11. 11. Chattopadhyay A, Dasgupta T, Hazra P, Som MG. Character association and path analysis in vegetable cowpea. Madras Agric J. 1996;84:153–6.
  12. 12. Adewale BD, Adeigbe OO, Aremu CO. Genetic distance and diversity among some cowpea (Vigna unguiculata L. Walp) genotypes. Int Res J Plant Sci. 2011;1(2):9–14.
  13. 13. Hazra P, Som MG, Das PK. Leaf characters as pod yield component of cowpea. Phytobreedon. 1992;8:68–72.
  14. 14. Nath V, Lal H, Rai M, Rai N, Ram D. Hierarchical clustering and character association studies in cowpea [Vigna unguiculata (L.) Walp.]. Indian J Plant Genet Res. 2009;22:22–5.
  15. 15. Chattopadhyay A, Dutta S, Bhattacharya I, Karmakar K, Hazra P. Dolichos bean. In: Technology for Vegetable Crop Production. All India Coordinated Research Project on Vegetable Crops. Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal; 2007. p. 218–30.
  16. 16. Lowry OH, Rosbrough NJ, Farr AL, Randall RJ. Total protein estimation by Lowry’s method. J Biol Chem. 1951;193(1):265–75.
  17. 17. Panse VG, Shukhatme PV. Statistical Methods for Agricultural Workers. 2nd ed. ICAR Publications; 1967.
  18. 18. Burton GW. Quantitative inheritance in grasses. In: Proceedings of the 6th International Grassland Congress. Washington; 1952. p. 277–83.
  19. 19. Hanson CH, Robinson HF, Comstock RE. Biometrical studies of yield in segregating population of Korean lespedza. Agron J. 1956;48:268–72.
  20. 20. Lush JL. Heritability of quantitative characters in farm animals. Proceedings of the 8th International Congress of Human Genetics. 1949. p. 356–75.
  21. 21. Johnson HW, Robison HF, Gomostock HE. Estimate of genetic and environmental variability in soyabean. Agron J. 1955;47:314–18.
  22. 22. Dewey DR, Lu KH. A correlation and path coefficient analysis of components of crested wheat grass. Agron J. 1959;51:515–18.
  23. 23. Rao CR. Minimum variance estimation in distributions admitting ancillary statistics. Sankhya: Indian J Stat. 1952; p. 53–6.
  24. 24. Ward JH Jr. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236–44.
  25. 25. Egbadzor KF, Yeboah M, Gamedoagbao DK, Offei SK, Danquah EY, Ofori K. Inheritance of seed coat colour in cowpea (Vigna unguiculata (L.) Walp.). Int J Plant Breed Genet. 2014;8:35–43. https://doi.org/10.3923/ijpbg.2014.35.43
  26. 26. Ali B, Izge AU, Odo PE, Aminu D. Varietal performance of dual purpose dry season cowpea (Vigna unguiculata L. Walp) under varying plant spacing in the Fadama in northeastern Nigeria. Am-Eurasia J Sustain Agric. 2009;3(1):13–8.
  27. 27. Ichi JO, Igbadun HE, Miko S, Samndi AM. Growth and yield response of selected cowpea (Vigna unguiculata (L.) Walp) varieties to irrigation interval and sowing date. Pac J Sci Technol. 2013;14(1):453–63.
  28. 28. Silva PSL, Oliveira CN. Rendimentos de feijão verde e maduro de cultivares de caupi. Hortic Bras. 1993;11:133–5.
  29. 29. Muhammad G, Ramazan CM, Aslam M, Chaudhry GA. Performance of cowpea cultivars under rainfed conditions. J Agric Res. 1994;32(1):119–22.
  30. 30. Amanullah A, Mir Hatam MH, Naeem Ahmad NA. Performance and distinguishing characters of promising cowpea germplasm. Sarhad J Agric. 2000;16(4):365–75.
  31. 31. Damarany AM. Testing and screening of some cowpea genotypes under Assiut conditions. Assiut J Agri Sci. 1994;25(4):9–19.
  32. 32. Carvalho M, Carnide V, Sobreira C, Castro I, Coutinho J, Barros A, et al. Cowpea immature pods and grains evaluation: An opportunity for different food sources. Plants. 2022;11:2079. https://doi.org/10.3390/plants11162079
  33. 33. Ram T, Ansari MM, Sharma TVRS. Relative performance of cowpea genotypes in rainfed condition of Andaman and their genetic parameter analysis for seed yield. Indian J Pulses Res. 1994;7(1):72–5.
  34. 34. Sadiq SM, Saleem IJ. Genetic variability and selection in hexaploid triticale. Proceedings of the International Symposium, Sydney. Australian Institute of Agricultural Science. 1986. p. 182–5.
  35. 35. Singh HN, Singh RR, Mital RK. Genotypic and phenotypic variability in tomato. Indian J Agric Sci. 1974;44(12):807–11.
  36. 36. Vidya C, Oommen SK, Kumar V. Genetic variability and heritability of yield and related characters in yard long bean. J Trop Agric. 2002;40:11–3.
  37. 37. Sreekumar KK, Inasi KA, Antony A, Nair RR. Genetic variability, heritability and correlation studies in vegetable cowpea (Vigna unguiculata var. sesquipedalis). South Ind Hort. 1996;44:15–8.
  38. 38. Saidaiah P, Pandravada SR, Geetha A, Kamala V. Investigations on per se performance, genetic variability and correlations in vegetable cowpea [Vigna unguiculata (L.) Walp.] germplasm for yield and its attributing traits. Legume Res. 2021;44(11):1267–77. https://doi.org/10.18805/LR-4645
  39. 39. Pandey S, Kumar S, Rai M, Mishra U, Singh M. Assessment of genetic diversity in Indian ash gourd (Benincasa hispida) accessions using RAPD markers. In: Cucurbitaceae 2008: Genetics and Breeding of Cucurbitaceae. Proceedings of the IXth EUCARPIA, INRA, Avignon, France; 2008 May 21–24.
  40. 40. Hayes HK, Immer FR, Smith DC. Methods of plant breeding. 2nd ed. New York: McGraw-Hill; 1955. p. 551.
  41. 41. Robinson HF, Comstock RE, Harvey PH. Estimation of heritability and the degree of dominance in corn. Agron J. 1949;41:353–9.
  42. 42. Songsri P, Joglloy S, Kesmala T, Vorasoot N, Akkasaeng CPA, Holbrook C. Heritability of drought resistant traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci. 2008;48:2245–53.
  43. 43. Sobha PP. Variability and heterosis in bush type vegetable cowpea [Vigna unguiculata (L.) Walp]. M.Sc. Thesis. Kerala Agricultural University, Thrissur; 1994.
  44. 44. Panse VG. Genetics of quantitative characters in relation to plant breeding. Indian J Genet Plant Breed. 1957;17:318–35.
  45. 45. Venkatesan M, Prakash M, Ganesan J. Correlation and path analysis in cowpea [Vigna unguiculata (L.) Walp.]. Legume Res. 2003;26(2):105–8.
  46. 46. Pathak S, Jamwal RS. Variability and correlations for economic traits in powdery mildew–resistant genotypes of garden pea (Pisum sativum L.). Himachal J Agric Res. 2002;28(1–2):34–9.
  47. 47. Manggoel W, Uguru MI, Ndam ON, Dasbak MA. Genetic variability, correlation and path coefficient analysis of some yield components of ten cowpea [Vigna unguiculata (L.) Walp] accessions. J Plant Breed Crop Sci. 2012;4(5):80–6. https://doi.org/10.5897/JPBCS12.007
  48. 48. Thorat A, Gadewar RD. Variability and correlation studies in cowpea (Vigna unguiculata). ESSENCE Int J Environ Rehabil Conserv. 2013;4(1):44–9.
  49. 49. Sapara GK, Javia RM. Correlation and path analysis in vegetable cowpea (Vigna unguiculata L.). Int J Plant Sci (Muzaffarnagar). 2014;9(1):138–41.
  50. 50. Patel UV, Parmar VK, Patel PB, Malviya AV. Correlation and path analysis study in cowpea [Vigna unguiculata (L.) Walp]. Int J Sci Environ Technol. 2016;5(6):3897–904.
  51. 51. Nautiyal MK, Massey P, Bhatt L. Genetic variability studies for identification of high yielding genotypes with high protein content in grain cowpea [Vigna unguiculata (L.) Walp.]. Legume Res. 2024. https://doi.org/10.18805/LR-5269
  52. 52. Singh OV, Shekhawat N, Singh K, Gowthami R. Assessment of genetic variability and inter-character association in the germplasm of cowpea (Vigna unguiculata L. Walp) in hot arid climate. Legume Res. 2018;43(3):332–6. https://doi.org/10.18805/LR-3983
  53. 53. Anbumalarmathi J, Sheeba A, Deepasankar P. Genetic variability and interrelationship studies in cowpea [Vigna unguiculata (L.) Walp.]. Res Crops. 2005;6(3):517–9.
  54. 54. Samaee SM, Shobbar ZS, Ashrafi H, Hosseini-Mazinani M. Molecular characterization of olive germplasm in Iran using random amplified polymorphic DNA (RAPD): Correlation with phenotypic studies. Acta Hortic. 2003;623:169–75.
  55. 55. Udensi O, Ikpeme EV, Edu EA, Ekpe DE. Relationship studies in cowpea (Vigna unguiculata L. Walp) landraces grown under humid lowland condition. Int J Agric Res. 2012;7(1):33–45. https://doi.org/10.3923/ijar.2012.33.45
  56. 56. Vavilapalli SK, Celine VA, Sreelathakumai I. Genetic divergence analysis in vegetable cowpea [Vigna unguiculata subsp. unguiculata (L.) Walp.] genotypes. Legume Genom Genet. 2014;5(2):4–6. https://doi.org/10.5376/lgg.2014.05.0002
  57. 57. Srinivas J, Kale VS, Nagre PK, Meshram M. Genetic divergence studies in cowpea. Int J Agric Res. 2016;6(3):97–104.
  58. 58. Praveena VS, Abraham M, Kumar V. Genetic divergence studies in fodder cowpea [Vigna unguiculata (L.) Walp.] using D² statistics. Forage Res. 2019;44(4):230–6.
  59. 59. Hazra P, Som MG, Das PK. Genetic divergence for pod yield and its components in cowpea. Haryana J Hort Sci. 1993;22:296–302.
  60. 60. Kalloo K, Singh VP, Dudi BS, Partap PS. Analysis of variation and genetic divergence in garden peas (Pisum sativum L.). Haryana Agric Univ J Res. 1980;10(4):540–6.
  61. 61. Jain P, Saini ML, Arrora RN. Genetic divergence in cowpea. Forage Res. 2006;32:12–4.
  62. 62. Nogueira APO, Sediyama T, de Sousa LB, Hamawaki OT, Cruz CD, Pereira DG, et al. Análise de trilha e correlações entre caracteres em soja cultivada em duas épocas de semeadura. Biosci J. 2012;28(6):877–88.
  63. 63. Vianna VF, Unêda-Trevisoli SH, Desidério JA, Santiago SD, Charnai K, Ferreira Júnior JA, Mauro AD. The multivariate approach and influence of characters in selecting superior soybean genotypes. Afr J Agric Res. 2013;8(30):4162–9.
  64. 64. Chipeta MM, Kafwambira J, Yohane E. Cowpea genetic diversity, population structure and genome-wide association studies in Malawi: insights for breeding programs. Front Plant Sci. 2025;15:1461631. https://doi.org/10.3389/fpls.2024.1461631
  65. 65. Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. New Jersey: Prentice-Hall; 1988.

Downloads

Download data is not yet available.