Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Nutrition, breeding and biotechnology of leguminous root crops for food security: Yam bean, African yam bean and Winged bean

DOI
https://doi.org/10.14719/pst.9638
Submitted
26 May 2025
Published
23-09-2025

Abstract

Yam bean (Pachyrhizus spp.), African yam bean (Sphenostylis stenocarpa) and winged bean (Psophocarpus tetragonolobus) are protein- and carbohydrate-rich leguminous root crops with significant potential for food security and industrial applications. Yam bean (P. erosus) has potential to yield storage root between 120 - 145 t/ha, with a starch content of 45-55 %, while its seeds contained 29.2 % - 32.1 % protein and 14.09 % - 18.91 % crude fat, making it a nutritionally valuable leguminous tuber crop​. Advances in its breeding included SSR markers for diversity assessment, rotenone-free cultivars and interspecific hybridization. African yam bean is cultivated across West and Central Africa, with storage root yields reaching up to 80 t/ha and seed yields ranging from 0.4 to 2.8 t/ha, while its tubers contained 16 % protein and 68 % carbohydrates and seeds provided 37 % protein and 64 % carbohydrates. Recent genetic improvements included early-maturing varieties (120 - 150 days), SNP markers for yield selection and enhanced disease resistance against anthracnose and rust. Winged bean produced tuber yields of 15.5 t/ha and seed yields up to 4.0 t/ha, with seeds containing 28 % - 45 % protein and 14 % - 20.4 % fat, while tubers offer 12.26 % - 19.07 % protein and served as a carbohydrate-rich food source. Genetic advancements in marker-assisted selection (MAS), QTL mapping (qPL1, qSS2, qFC3) and mutation breeding (gamma irradiation 100 - 400 Gy) had improved productivity. Additionally, the tissue culture protocol for winged bean seeds was optimized using MS media supplemented with 2.0 mg/L BAP and 0.5 mg/L NAA, resulting in 92 % shoot regeneration. Future research is recommended to focus on genome editing, polyploid breeding, post-harvest optimization and functional food applications to enhance crop utilization and sustainability.

References

  1. 1. Sharma P, Ahlawat IPS, Singh U. Production, demand and import of pulses in India. Indian. J. Agron. 2016;61(4):561–72.
  2. 2. Chaturvedi SK, Gaur PM. Pulses research and development strategies for India. Int. Crops. Res. Inst. Semi-Arid Trop. (ICRISAT). 2015;43(2):89–102.
  3. 3. Singh R, Nelson R. Inter sub generic hybridization between Glycine max and G. tomentella: production of F1, amphidiploid, BC1, BC2, BC3 and fertile soybean plants. Theor Appl Genet. 2015;128:1117–36. https://doi:10.1007/s00122-015-2494-0
  4. 4. Maredia MK, Akibode CS. Global and regional trends in production, trade and consumption of food legume crops. Ageconsearch. 2012;15(2):245–60.
  5. 5. Bhat S, Aditya KS, Kumari B, Acharya KK. Pulses production, trade and policy imperatives: A global perspective. Elsevier. 2022;28(3):145–62. https://doi:10.1016/B978-0-323-85797-0.00018-5
  6. 6. FAO. FAOSTAT - Global Agricultural Data. Rome: FAO; 2021.
  7. 7. Okezie CE, Okeke CU. Nutritional and agronomic importance of African yam bean. Afr J Food Sci. 2020;14(7):234–45.
  8. 8. International Institute of Tropical Agriculture (IITA). African yam bean: A climate-resilient crop for food security. Ibadan, Nigeria: IITA; 2018.
  9. 9. National Research Council (NRC). The winged bean: A high-protein crop for the tropics. Washington, DC: National Academy of Sciences; 1975.
  10. 10. Pithia MS, Javia RM, Pathak AR. Challenges and options for meeting the needs of pulses: A review. Agric Res. 2017;38(2):15–23. https://doi:10.18805/ag.v38i02.7941
  11. 11. Shukla UN, Mishra ML. Present scenario, bottlenecks and expansion of pulse production in India: A review. Legume Res Int J. 2020;43(4):28–36. https://doi:10.18805/LR-3998.
  12. 12. Popoola JO, Aworunse OS, Ojuederie OB. The exploitation of orphan legumes for food, income and nutrition security in Sub-Saharan Africa. Front Plant Sci. 2022;13:782140. https://doi:10.3389/fpls.2022.782140.
  13. 13. Paliwal R, Abberton M, Faloye B, Olaniyi O. Developing the role of legumes in West Africa under climate change. Curr Opin Plant Biol. 2020;56:164–71. https://doi:10.1016/j.pbi.2020.05.002.
  14. 14. Popoola JO, Aworunse OS, Ojuederie OB. The exploitation of orphan legumes for food, income and nutrition security in Sub-Saharan Africa. Front Plant Sci. 2022;13:782140. https://doi.org/10.3389/fpls.2022.782140
  15. 15. Stai JS, von Wettberg EB, Smýkal P, Cannon SB. Which came first: the tuber or the vine? A taxonomic overview of underground storage in the legumes. Legume Perspect. 2020;19:5–7.
  16. 16. Massawe FJ, Turner T, Mayes S, Nawiri M, Coe R. Indigenous African orphan legumes: Potential for food and nutritional security. Front Sustain Food Syst. 2022;6:708124. https://doi.org/10.3389/fsufs.2022.708124
  17. 17. Zanklan AS, Becker HC, Sørensen M, Masawe F. Genetic diversity in cultivated yam bean (Pachyrhizus spp.) evaluated through multivariate analysis of morphological and agronomic traits. Genet Resour Crop Evol. 2018;65(6):1525-40. https://doi.org/10.1007/s10722-017-0582-5
  18. 18. Vaz Patto MC. Add a tuber to the pod: edible tuberous legumes. Legume Perspect. Issue 19; 2020:1–40.
  19. 19. Sørensen M. Yam bean (Pachyrhizus DC.):Promoting the conservation and use of underutilized and neglected crops. 2. Bioversity International; 1996.
  20. 20. Debouck DG. Introduction to the conservation of genetic resources of American tuber legumes (Pachyrhizus); 1994.
  21. 21. Sørensen M, Vecht KA, Montes ÉOL. Yam beans (Pachyrhizus tuberosus and Pachyrhizus erosus): Lowland South American and Meso-American cultivars. In: Varieties and Landraces. Elsevier; 2023. p. 45–60. https://doi:10.1016/B978 0 12 823778 1.00003 6.
  22. 22. Mandal B, Sastry KS, Hammond J, Scott SW. Pachyrhizus spp. (Yam bean). In: Encyclopedia of Plant Virology. Springer, Cham; 2019. p. 648–56. https://doi:10.1007/978-81-322-3912-3_648
  23. 23. Murugesan P, Narayan HA, Rahana SN, Jaisankar I, Pradeep K, Jerard A. Characterization of yam bean (Pachyrhizus erosus) germplasm from Havelock (A & N) Island and comparison with RM-1 variety. J Root Crops. 2024;50(1):56–61.
  24. 24. Jean N, Patrick R, Phenihas T, Rolland A. Evaluation of performance of introduced yam bean (Pachyrhizus spp.) in three agro-ecological zones of Rwanda. Trop Plant Biol. 2017;10(4):185–98. https://doi:10.1007/s12042-017-9188-5
  25. 25. Kisambira A. Physicochemical characteristics of yam bean (Pachyrhizus spp.) seed flour. Master’s thesis, Makerere University, Uganda; 2014. http://dspace.mak.ac.ug/handle/10570/3254
  26. 26. Talucder MSA, Ruba UB, Robi MAS. Potentiality of neglected and underutilized species (NUS) as future resilient food: a systematic review. J Agric Food Res. 2024;16:100456. https://doi:10.1016/j.jafr.2024.101116
  27. 27. Sørensen M, Døygaard S, Estrella JE, Kvist LP. Status of the South American tuberous legume Pachyrhizus tuberosus (Lam.) Spreng.: field observations, taxonomic analysis, linguistic studies and agronomic data. Biodivers Conserv. 1997;6(12):1581–1600. https://doi.org/10.1023/A:1018326805849
  28. 28. Gruenberg MG, Halvorson JJ, Hagerman AE, Enoma IG, Schmidt MA. Oxidation of small phenolic compounds by Mn (IV). Molecules. 2024;29(18):4320. https://doi:10.3390/molecules29184320
  29. 29. Apia C, Sørensen M. Morphological characterization of the genetic variation existing in a Neotropical collection of yam bean Pachyrhizus tuberosus (Lam.) Spreng. Genet Resour Crop Evol. 2003;50:681–92. https://doi:10.1023/A:1025028617948
  30. 30. Lautié E, Rozet E, Hubert P, Leclercq JQ. Quantification of rotenone in seeds of different species of yam bean (Pachyrhizus sp.) by a SPE HPLC-UV method. Food Chem. 2012;131(4):1531-38. https://doi.org/10.1016/j.foodchem.2011.09.125
  31. 31. Ore-Balbin A, Blas R, Grüneberg WJ. Agronomic performance and biochemical composition of yam bean storage roots. Acta Hortic. 2007;744:25–32.
  32. 32. National Research Council (US). Tropical legumes: resources for the future. Washington (DC): National Academy of Sciences; 1979.
  33. 33. Bruneau A, Doyle JJ, Palmer JD. Evolutionary relationships among the legume subfamilies based on chloroplast DNA restriction site variation. Syst Bot. 1994;19:98–116.
  34. 34. Lee S, Hymowitz T. Taxonomy of the yam bean (Pachyrhizus). Plant Syst Evol. 2001;227:45–56.
  35. 35. Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol. 2003;131(3):872–7. https://doi:10.1104/pp.017004
  36. 36. Moorthy KK, Babu SS, Sunilkumar SV, Gupta PK, Gera BS. Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India. Geophys Res Lett. 2004;31(22). https://doi:10.1029/2004GL021336
  37. 37. George TT, Obilana AO, Oyeyinka SA. The prospects of African yam bean: past and future importance. Heliyon. 2020;6(11):e05458. https://doi:10.1016/j.heliyon.2020.e05458
  38. 38. Lappè MA, Bailey EB, Childress C, Setchell KD. Alterations in clinically important phytoestrogens in genetically modified, herbicide-tolerant soybeans. J. Med. Food. 1998;1(4):241–5. https://doi:10.1089/jmf.1998.1.241.
  39. 39. Pati K, Kaliyappan R, Chauhan VBS, Bansode V, Nedunchezhiyan M, Hegde V, et al. Phenological growth stages of underutilised crop yam bean (Pachyrhizus erosus L. Urban) according to the extended BBCH scale. Ann. Appl. Biol. 2020;177(3):417–23. https://doi:10.1111/aab.12637.
  40. 40. Pati K, Donde R, Dash GK, Acharya V. Cross-species transferability of soybean SSR markers to yam bean (Pachyrhizus erosus L.): an underutilized crop for diversity analysis. Genet. Resour. Crop. Evol. 2024;71(1):42–57. https://doi:10.1007/s10722-023-01692-8
  41. 41. Pati K, Zhang F, Batley J. First report of genome size and ploidy of the underutilized leguminous tuber crop yam bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant. Genet. Resour. 2019;17(5):456–9. https://doi:10.1017/S1479262119000170
  42. 42. Adewale BD, Odoh NC. A review on genetic resources, diversity and agronomy of African yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms): a potential future food crop. Sustain Agric Res. 2013;2(1):32–43. Canadian Center of Science and Education. https://doi:10.5539/sar.v2n1p32
  43. 43. Adewale B, Kehinde O, Aremu C, Popoola J, Dumet D. Seed metrics for genetic and shape determinations in African yam bean [Fabaceae] (Sphenostylis stenocarpa Hochst. ex A. Rich.) Harms. Afr. J. Plant Sci. 2010;4(4):107–15.
  44. 44. Gbenga-Fabusiwa FJ. African yam beans (Sphenostylis stenocarpa): a review of a novel tropical food plant for human nutrition, health and food security. Afr. J. Food Sci. 2021;15(6):236–47. https://doi:10.5897/AJFS2020.1961
  45. 45. Shitta NS, Abtew WG, Ndlovu N, Oselebe HO, Edemodu AC, Abebe AT. Morphological characterization and genotypic identity of African yam bean (Sphenostylis stenocarpa Hochst. ex A. Rich. Harms) germplasm from diverse ecological zones. Plant. Genet. Resour. 2021;19(1):58–66. https://doi:10.1017/s1479262121000095
  46. 46. Ncama K, Sithole NJ, Dada OA. Exploring the potential of using fertilizers to condition the metabolism and physiology of dual-yield crops in a water deficit environment: a review. Agriculture. 2024;14(11):1874. https://doi:10.3390/agriculture14111874
  47. 47. Adelabu DB, Franke AC. Research status of seed improvement in underutilized crops: prospects for enhancing food security. J. Agric. Sci. 2023;161(3):398–411. https://doi:10.1155/2019/3075208
  48. 48. Rubatzky VE, Yamaguchi M. Other underground starchy vegetables. In: World Vegetables: principles, production and nutritive values. New York: Springer; 1997. p. 325-45. https://doi.org/10.1007/978-1-4615-6015-9_14
  49. 49. Bepary RH, Roy A, Pathak K, Deka SC. Biochemical composition, bioactivity, processing and food applications of winged bean (Psophocarpus tetragonolobus): a review. Legume Sci. 2023;5(3):e187. https://doi:10.1002/leg3.187
  50. 50. George TT, Obilana AO, Oyeyinka SA. The prospects of African yam bean: past and future importance. Heliyon. 2020;6(11):e05458. https://doi:10.1016/j.heliyon.2020.e05458
  51. 51. Ojuederie OB, Balogun MO. African yam bean (Sphenostylis stenocarpa) tubers for nutritional security. J. Underutil. Legumes. 2019;1(1):56–68.
  52. 52. Aina A, Garcia-Oliveira AL, Ilori C, Chang PL, Yusuf M. Predictive genotype-phenotype relations using genetic diversity in African yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich) Harms). BMC. Plant. Biol. 2021;21:3302. https://doi:10.1186/s12870-021-03302-0
  53. 53. Adebayo TK, Daramola AS, Abdulraheem IA, Jimoh KA. Effect of inclusion of velvet bean on the proximate composition and functional properties of the wheat-plantain flour blends. World. J. Adv. Res. Rev. 2023;20:562–73. https://doi:10.30574/wjarr.2023.20.3.2474
  54. 54. Oluwole OO, Aworunse OS, Aina AI, Oyesola OL. A review of biotechnological approaches towards crop improvement in African yam bean (Sphenostylis stenocarpa Hochst. ex A. Rich.). Heliyon. 2021;7(11):e08465. https://doi:10.1016/j.heliyon.2021.e08481
  55. 55. Pradhan P, Callaghan M, Hu Y, Dahal K, Hunecke C, Reußwig F, et al. A systematic review highlights that there are multiple benefits of urban agriculture besides food. Glob. Food. Secur. 2023;38:100700. https://doi:10.1016/j.gfs.2023.100700
  56. 56. Ojuederie OB, Popoola JO, Aremu C, Babalola OO. Harnessing the hidden treasures in African yam bean (Sphenostylis stenocarpa): an underutilized grain legume with food security potentials. Front. Plant. Sci. 2023;14:1105364. https://doi:10.3389/fpls.2023.1105364
  57. 57. Lepcha P, Egan AN, Doyle JJ. A review on current status and future prospects of winged bean (Psophocarpus tetragonolobus) in tropical agriculture. Plant. Foods. Hum. Nutr. 2017;72(3):233–44. https://doi:10.1007/s11130-017-0627-0
  58. 58. Sriwichai S, Monkham T, Sanitchon J, Jogloy S, Chankaew S. Dual-purpose of the winged bean (Psophocarpus tetragonolobus (L.) DC.), the neglected tropical legume, based on pod and tuber yields. Plants. 2021;10(8):1746. https://doi:10.3390/plants10081746
  59. 59. Tanzi AS, Ho WK, Massawe F, Mayes S. Development and interaction between plant architecture and yield-related traits in winged bean (Psophocarpus tetragonolobus (L.) DC.). Euphytica. 2019;215(2):36. https://doi:10.1007/s10681-019-2359-8
  60. 60. Kadam SS, Salunkhe DK, Luh BS. Winged bean in human nutrition. Crit Rev Food Sci Nutr. 1984;21(1):1–40. https://doi:10.1007/s00425-019-03141-2
  61. 61. Makeri MU, Mohamed SA, Karim R, Ramakrishnan Y, Muhammad K. Fractionation, physicochemical and structural characterization of winged bean seed protein fractions with reference to soybean. Int. J. Food. Prop. 2017;20(sup2):2220–31. https://doi:10.1080/10942912.2017.1369101
  62. 62. Eagleton GE, Tanzi AS, Mayes S, Massawe F. Winged bean (Psophocarpus tetragonolobus (L.) DC.). In: Mayes S, Massawe F, Tanzi A, editors. Genetic and Genomic Resources of Underutilized Crops. Cham: Springer; 2019. p. 367–90. https://doi:10.1007/s00425-019-03141-2
  63. 63. Klu GYP. Efforts to accelerate domestication of winged bean (Psophocarpus tetragonolobus (L.) DC.) by means of induced mutations and tissue culture. Wageningen. Agric. Univ. Pap. 1996;96(3):145–65.
  64. 64. Adegboyega TT, Abberton MT, AbdelGadir AAH, Dianda M, Maziya-Dixon B, Oyatomi OA, et al. Nutrient and antinutrient composition of winged bean (Psophocarpus tetragonolobus (L.) DC.) seeds and tubers. J. Food. Qual. 2019;2019:1-8. https://doi.org/10.1155/2019/3075208
  65. 65. Ho WK, Tanzi AS, Sang F, Tsoutsoura N, Shah N, Moore C, et al. A genomic toolkit for winged bean Psophocarpus tetragonolobus. Nat. Commun. 2024;15:1901. https://doi:10.1038/s41467-024-045048-x
  66. 66. Sathe SK, Venkatachalam M. Fractionation and biochemical characterization of moth bean (Vigna aconitifolia L.) proteins. LWT-Food. Sci. Technol. 2007;40(4):600–10. https://doi:10.1016/j.lwt.2006.03.021
  67. 67. Stephenson R, Kesavan V, Claydon A, Bala A, Kaiulo J. Studies on tuber production in winged bean (Psophocarpus tetragonolobus (L.) DC.). In: Proc. 5th Int. Symp. Trop. Root. Tuber. Crops, Laguna, 1979.
  68. 68. Cherdthong A, Sombuddee N, Lukbun S, Kanakai N, Srichompoo P, Jaikan W, et al. Optimizing the utilization of winged bean (Psophocarpus tetragonolobus (L.) DC.) tubers as a replacement for cassava chips in ruminant diets through pelleting: an in vitro gas technique study. BMC. Vet. Res. 2025;21:282. https://doi:10.1186/s12917-025-04733-9
  69. 69. Chankaew S, Sriwichai S, Rakvong T, Somta P. The first genetic linkage map of winged bean (Psophocarpus tetragonolobus (L.) DC.) and QTL mapping for flower-, pod- and seed-related traits. Plants. 2022;11(4):500. https://doi:10.3390/plants11040500
  70. 70. Bassal H, Merah O, Ali AM, Hijazi A, El Omar F. Psophocarpus tetragonolobus: an underused species with multiple potential uses. Plants (Basel). 2020;9(12):1730. https://doi:10.3390/plants9121730
  71. 71. Mahobia A, Jadhav PV, Shinde UD, Mote GK, Zanjal SL, Mundhe BS, et al. Winged bean (Psophocarpus tetragonolobus). In Potential pulses: Genetic and genomic Resources. 1st ed. Wallingford: CABI; 2024. p. 241–63. https://doi:10.1079/9781800624658.0013
  72. 72. Rakvong T, Monkham T, Sanitchon J, Chankaew S. Tuber development and tuber yield potential of winged bean (Psophocarpus tetragonolobus (L.) DC.), an alternative crop for animal feed. Agronomy. 2024;14(7):1433. https://doi:10.3390/agronomy14071433
  73. 73. Sarkar S, Lagoriya DS, Paul SK, Kant A, Saha S. D² statistical analysis of tuber yield and its contributing traits in winged bean (Psophocarpus tetragonolobus L. DC.). Biol. Int. J. 2022;12(4):85–98.
  74. 74. Bhadmus AA, Olatunde TE, Adebayo AM, Adejumobi II. Assessment of genetic diversity in winged bean accessions using morphological traits and microsatellite markers. Preprints. 2023. https://doi:10.20944/preprints202306.0613.v1
  75. 75. Udensi OU, Ikpeme EV. Flow cytometry determination of ploidy level in winged bean and its response to colchicine-induced mutagenesis. Glob. J. Pure. Appl. Sci. 2017;23(4):98–112. https://doi:10.4314/gjpas.v23i1.5
  76. 76. Venketeswaran S. Winged bean: Advances in legume and oilseed crops research. Springer; 1990. p. 150–67. https://doi:10.1007/978-3-642-74448-8_9
  77. 77. Tsoutsoura N, Chong YT, Ho WK, Chai HH, et al. The winged bean genome: Winged bean-one species supermarket. In Underutilized crop genomics. Cham: Springer; 2022. p. 301–25. https://doi:10.1007/978-3-031-00848-1_17
  78. 78. Adejumobi II, Agre PA, Adewumi AS, Shonde TE, Cipriano IM, Komoy JL, et al. Association mapping in multiple yam species (Dioscorea spp.) of quantitative trait loci for yield-related traits. BMC. Plant. Biol. 2023;23(1):357. https://doi:10.1186/s12870-023-04350-4
  79. 79. Ojuederie OB, Popoola JO, Aremu C, Babalola OO. Harnessing the hidden treasures in African yam bean (Sphenostylis stenocarpa), an underutilized grain legume with food security potentials. In: Food security and safety: African perspectives. Springer; 2021. p. 1–20. https://doi:10.1007/978-3-030-50672-8_1
  80. 80. Pati K, Donde R, Dash GK, Acharya V. Cross-species transferability of soybean SSR markers to yam bean (Pachyrhizus erosus L.): an underutilized crop for diversity analysis. Genet. Resour. Crop. Evol. 2024;71(1):42–57. https://doi:10.1007/s10722-023-01692-8
  81. 81. Jena B, Pati K, Nedunchezhiyan M, Kumar A. Application of DNA barcode for cultivar identification in tuber crops. Agronomy. 2022;11(5):953–60.

Downloads

Download data is not yet available.