Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Wild crop relatives as genetic resources: Advanced strategies for breeding climate-resilient crops

DOI
https://doi.org/10.14719/pst.9656
Submitted
27 May 2025
Published
09-10-2025

Abstract

With climate change threatening global food security, wild crop relatives (WCRs) have emerged as a game-changing resource for breeding crops that can withstand extreme conditions. These wild ancestors of modern crops hold the key to traits like drought tolerance, heat resistance and pest resilience that many domesticated varieties have lost over time. By tapping into the genetic diversity of WCRs, scientists can develop stronger, more adaptable crops that can thrive in challenging environments. Recent advances in plant breeding, such as marker-assisted selection (MAS), genomic selection and CRISPR gene editing, have made it easier to transfer valuable traits from WCRs into cultivated crops. However, challenges remain, including genetic incompatibilities, slow breeding processes and the need for better conservation efforts to protect these wild species. Seed banks, in-situ conservation and advanced breeding programs are helping to safeguard this genetic treasure trove for future generations. This review examines the potential of wild crop relatives (WCRs) to transform climate-resilient agriculture by showcasing advanced breeding techniques and identifying remaining challenges. Harnessing wild genes alongside modern scientific approaches offers a path toward a more sustainable and food-secure future.

References

  1. 1. Acquaah G. Principles of plant genetics and breeding. 2nd ed. Hoboken (NJ). Wiley. 2012. https://doi.org/10.1002/9781118313718
  2. 2. P P. Climate change. In: Definitions. Qeios. 2024. https://www.qeios.com/
  3. 3. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ. Climate variability and vulnerability to climate change: A review. Glob Change Biol. 2014;20(11):3313-28. https://doi.org/10.1111/gcb.12581
  4. 4. Barati AA, Azadi H, Movahhed Moghaddam S, Scheffran J, Dehghani Pour M. Agricultural expansion and its impacts on climate change: Evidence from Iran. Environ Dev Sustain. 2023;26(2):5089-115. https://doi.org/10.1007/s10668-023-02926-6
  5. 5. Zhu T, Fonseca De Lima CF, De Smet I. The heat is on: How crop growth, development and yield respond to high temperature. J Exp Bot. 2021;72(20):7359-73. https://doi.org/10.1093/jxb/erab308
  6. 6. Rajpal VR, Sehgal D, Kumar A, Raina SN. Sustainable Development and Biodiversity. Cham. Springer. 2025. http://www.springer.com/series/11920
  7. 7. Rajpal VR, Sehgal D, Kumar A, Raina SN. Genetic enhancement of crops for tolerance to abiotic stress: Mechanisms and Approaches. Vol. I. Cham. Springer. 2019. https://www.springer.com/series/11920
  8. 8. Zeroual A, Baidani A, Idrissi O. Drought stress in lentil (Lens culinaris, Medik) and approaches for its management. Horticulturae. 2023;9(1):1-13. https://doi.org/10.3390/horticulturae9010001
  9. 9. Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, et al. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc Natl Acad Sci U S A. 2014;111(9):3274-9. https://doi.org/10.1073/pnas.1222465110
  10. 10. Bangalore M, Hallegatte S, Bonzanigo L, Kane T, Fay M, Narloch U, et al. Shock Waves: Managing the Impacts of Climate Change on Poverty. Washington (DC). World Bank. 2016. https://doi.org/10.1596/978-1-4648-0673-5
  11. 11. Kahraman A, Pandey A, Khan MK, Lindsay D, Moenga S, Vance L, et al. Distinct subgroups of Cicer echinospermum are associated with hybrid sterility and breakdown in interspecific crosses with cultivated chickpea. Crop Sci. 2017;57(6):3101-11. https://doi.org/10.2135/cropsci2017.06.0335
  12. 12. Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M. Towards a definition of a crop wild relative. Biodivers Conserv. 2006;15(8):2673-85. https://doi.org/10.1007/s10531-005-5409-6
  13. 13. Wang Y, Chen G, Zeng F, Han Z, Qiu CW, Zeng M, et al. Molecular evidence for adaptive evolution of drought tolerance in wild cereals. New Phytol. 2023;237(2):497-514. https://doi.org/10.1111/nph.18560
  14. 14. Habora MEE, Eltayeb AE, Tsujimoto H, Tanaka K. Identification of osmotic stress-responsive genes from Leymus mollis, a wild relative of wheat (Triticum aestivum L.). Breed Sci. 2012;62(1):78-86. https://doi.org/10.1270/jsbbs.62.78
  15. 15. Langridge P, Reynolds M. Breeding for drought and heat tolerance in wheat. Theor Appl Genet. 2021;134(6):1753-69. https://doi.org/10.1007/s00122-021-03795-1
  16. 16. Kuroha T, Ashikari M. Molecular mechanisms and future improvement of submergence tolerance in rice. Mol Breed. 2020;40(4):41. https://doi.org/10.1007/s11032-020-01122-y
  17. 17. Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Liu N, et al. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic. 2010;126(2):103-8. https://doi.org/10.1016/j.scienta.2010.06.014
  18. 18. Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33(1):41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006
  19. 19. King J, Grewal S, Yang C, Hubbart S, Scholefield D, Ashling S, et al. A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol J. 2017;15(2):217-26. https://doi.org/10.1111/pbi.12606
  20. 20. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature. 2006;442(7103):705-8. https://doi.org/10.1038/nature04920
  21. 21. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed. 2019;39(3):47. https://doi.org/10.1007/s11032-019-0954-y
  22. 22. Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, et al. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants. 2022;11(9):1184. https://doi.org/10.3390/plants11091184
  23. 23. Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, et al. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. Plant Biotechnol J. 2024;22(2):316-29. https://doi.org/10.1111/pbi.14185
  24. 24. Taghouti M, Bassi FM, Nasrellah N, Amri A, Motawaj J, Nachit M. 'Nachit', a wild-relative-derived durum wheat resilient to climate change in Morocco. J Plant Regist. 2023;17(3):529-35. https://doi.org/10.1002/plr2.20292
  25. 25. Ayed S, Bouhaouel I, Othmani A, Bassi FM. Use of wild relatives in durum wheat (Triticum turgidum L. var. durum Desf.) breeding program: Adaptation and stability in context of contrasting environments in Tunisia. Agronomy. 2021;11(9):1875. https://doi.org/10.3390/agronomy11091782
  26. 26. Winchell F, Stevens CJ, Murphy C, Champion L, Fuller DQ. Evidence for sorghum domestication in fourth millennium BC eastern Sudan: Spikelet morphology from ceramic impressions of the Butana Group. Curr Anthropol. 2017;58(5):673-83. https://doi.org/10.1086/693898
  27. 27. Shrestha N, Hu H, Shrestha K, Doust AN. Pearl millet response to drought: A review. Front Plant Sci. 2023;14:1122654. https://doi.org/10.3389/fpls.2023.1059574
  28. 28. Alemayehu FR, Bendevis MA, Jacobsen SE. The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J Agron Crop Sci. 2015;201(5):321-9. https://doi.org/10.1111/jac.12108
  29. 29. Larriba E, Yaroshko O, Pérez-Pérez JM. Recent advances in tomato gene editing. Int J Mol Sci. 2024;25(5):2606. https://doi.org/10.3390/ijms25052606
  30. 30. Tian T, Qin F. CIMBL55: A repository for maize drought resistance alleles. Stress Biol. 2023;3(1):13. https://doi.org/10.1007/s44154-023-00091-4
  31. 31. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, et al. Genomic selection in plant breeding: methods, models and perspectives. Trends Plant Sci. 2017;22(11):961-75. https://doi.org/10.1016/j.tplants.2017.08.011
  32. 32. Rastogi Verma S. Genetically modified plants: public and scientific perceptions. ISRN Biotechnol. 2013;2013:1-11. https://doi.org/10.5402/2013/820671
  33. 33. Blancke S, Van Breusegem F, De Jaeger G, Braeckman J, Van Montagu M. Fatal attraction: The intuitive appeal of GMO opposition. Trends Plant Sci. 2015;20(7):414-8. https://doi.org/10.1016/j.tplants.2015.03.011
  34. 34. Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica. 2007;156(1-2):1-13. https://doi.org/10.1007/s10681-007-9363-0
  35. 35. Dempewolf H, Baute G anderson J, Kilian B, Smith C, Guarino L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017;57(3):1070-82. https://doi.org/10.2135/cropsci2016.10.0885
  36. 36. Crossa J, Fritsche-Neto R, Montesinos-Lopez OA, Costa-Neto G, Dreisigacker S, Montesinos-Lopez A, et al. The modern plant breeding triangle: Optimizing the use of genomics, phenomics and enviromics data. Front Plant Sci. 2021;12:651480. https://doi.org/10.3389/fpls.2021.651480
  37. 37. Saini H, Thakur R, Gill R, Tyagi K, Goswami M. CRISPR/Cas9-gene editing approaches in plant breeding. GM Crops Food. 2023;14(1):1-17. https://doi.org/10.1080/21645698.2023.2256930
  38. 38. Chen F, Chen L, Yan Z, Xu J, Feng L, He N, et al. Recent advances of CRISPR-based genome editing for enhancing staple crops. Front Plant Sci. 2024;15:1259745. https://doi.org/10.3389/fpls.2024.1478398
  39. 39. Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, et al. Crop phenomics and high-throughput phenotyping: Past decades, current challenges and future perspectives. Mol Plant. 2020;13(2):187-214. https://doi.org/10.1016/j.molp.2020.01.008
  40. 40. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, et al. Global conservation priorities for crop wild relatives. Nat Plants. 2016;2(4):16022. https://doi.org/10.1038/nplants.2016.22
  41. 41. Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl. 2017;10(1):5-24. https://doi.org/10.1111/eva.12434
  42. 42. Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. Nat Plants. 2020;6(8):914-20. https://doi.org/10.1038/s41477-020-0733-0
  43. 43. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants. 2018;4(1):23-9. https://doi.org/10.1038/s41477-017-0083-8
  44. 44. Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. Designing future crops: Genomics-assisted breeding comes of age. Trends Plant Sci. 2021;26(6):631-49. https://doi.org/10.1016/j.tplants.2021.03.010
  45. 45. Krieg CP, Smith DD, Adams MA, Berger J, Layegh Nikravesh N, von Wettberg EJ. Greater ecophysiological stress tolerance in the core environment than in extreme environments of wild chickpea (Cicer reticulatum). Sci Rep. 2024;14(1). https://doi.org/10.1038/s41598-024-56457-9
  46. 46. Jain SM, Brar DS, editors. Molecular techniques in crop improvement. Dordrecht. Springer Netherlands. 2009. https://doi.org/10.1007/978-90-481-2967-6
  47. 47. Scheben A, Wolter F, Batley J, Puchta H, Edwards D. Towards CRISPR/Cas crops - bringing together genomics and genome editing. New Phytol. 2017;216(3):682-98. https://doi.org/10.1111/nph.14702
  48. 48. Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001;2(12):983-9. https://doi.org/10.1038/35103590
  49. 49. Tanksley SD, McCouch SR. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science. 1997;277(5329):1063-6. https://doi.org/10.1126/science.277.5329.1063
  50. 50. Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S. Wheat genetic resources in the post-genomics era: Promise and challenges. Ann Bot. 2018;121(4):603-16. https://doi.org/10.1093/aob/mcx148
  51. 51. Esposito S, Cardi T, Campanelli G, Sestili S, Díez MJ, Soler S, et al. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean 'da serbo' type long shelf-life germplasm. Hortic Res. 2020;7(1):134. https://doi.org/10.1038/s41438-020-00353-6
  52. 52. Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, et al. De novo assembly, annotation and comparative analysis of 26 diverse maize genomes. Science. 2021;373(6555):655-62. https://doi.org/10.1126/science.abg5289

Downloads

Download data is not yet available.