Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Precision enology: CRISPR, AI and non-thermal innovations for optimizing wine's bioactive legacy

DOI
https://doi.org/10.14719/pst.9690
Submitted
29 May 2025
Published
08-10-2025

Abstract

This review critically examines the mechanisms by which winemaking processes and preservation techniques modulate the retention of bioactive compounds, shaping wine’s nutraceutical potential. Traditional practices (fermentation dynamics, barrel aging) and modern innovations (non-Saccharomyces yeasts, CRISPR engineering, enzyme-assisted extraction) are scrutinized for their impact on bioactive composition, emphasizing heat, oxygen and sulphite sensitivity. Preservation strategies from SO₂ to pulsed electric fields and nanotechnology are evaluated for balancing microbial stability, oxidation control and consumer demands. Wine’s polyphenols (resveratrol, quercetin), flavonoids and anthocyanins demonstrate cardioprotective, antioxidant and microbiota-modulating effects, yet controversies persist, alcohol’s health risks counterpose bioactive benefits, while epidemiological ambiguities in dosage-response relationships and confounding lifestyle factors challenge causal inferences. Case studies contrasting organic/conventional production and aging methods reveal trade-offs between sensory quality and bioactive retention. This review hypothesizes that synergistic integration of precision technologies (e.g., CRISPR yeast engineering, AI-driven fermentation) with non-thermal preservation can maximize bioactive retention while mitigating health risks. Urgency stems from consumer demand for health-functional wines and regulatory pressures to reduce sulphites and alcohol. Critical gaps remain in elucidating bioavailability mechanisms; sustainable processing aligned with circular economy principles and harmonizing health claims with regulatory frameworks. The review advocates for precision enology and transdisciplinary collaboration to advance wine as a functional food, urging rigorous, evidence-based innovation to reconcile tradition with health science, ensuring safety and efficacy in redefining wine’s cultural and nutraceutical legacy.

References

  1. 1. McGovern P. Ancient wine: the search for the origins of viniculture. Princeton: Princeton University Press; 2003
  2. 2. Albertin W, Chernova M, Durrens P, Guichoux E, Sherman DJ, Masneuf-Pomarede I, et al. Many interspecific chromosomal introgressions are highly prevalent in Holarctic Saccharomyces uvarum strains found in human-related fermentations. Yeast. 2017;35(1):141-56. https://doi.org/10.1002/yea.3248
  3. 3. Pasteur L, Faulkner F, Robb DC. Studies on fermentation: the diseases of beer, their causes and the means of preventing them. London: Macmillan & Co.; 1879. p. 1-387
  4. 4. Anderson K. Consumer taxes on alcohol: an international comparison over time. Journal of Wine Economics. 2020;15(1):42-70. https://doi.org/10.1017/jwe.2020.2
  5. 5. Renaud S, De Lorgeril M. Wine, alcohol, platelets and the French paradox for coronary heart disease. Lancet. 1992;339(8808):1523-6. https://doi.org/10.1016/0140-6736(92)91277-F
  6. 6. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270-8. https://doi.org/10.4161/oxim.2.5.9498
  7. 7. De Brevern AG. Analysis of protein disorder predictions in the light of a protein structural alphabet. Biomolecules. 2020;10(7):1080. https://doi.org/10.3390/biom10071080
  8. 8. Stockwell T, Zhao J. Alcohol's contribution to cancer is underestimated for exactly the same reason that its contribution to cardioprotection is overestimated. Addiction. 2016;112(2):230-2. https://doi.org/10.1111/add.13627
  9. 9. Organisation for Economic Co-operation and Development (OECD). Delivering quality health services: a global imperative. Paris: OECD Publishing; 2018
  10. 10. Fernández-Mar MI, Mateos R, García-Parrilla MC, Puertas B, Cantos-Villar E. Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review. Food Chem. 2011;130(4):797-813. https://doi.org/10.1016/j.foodchem.2011.08.023
  11. 11. Soleimani RA, Shokouhian SMJ, Houshyar J, Khani N, Abachi S, Milani PG, et al. Postbiotic bioactive packaging systems: a review. Curr Nutr Food Sci. 2023;20(3):296-304. https://doi.org/10.2174/1573401319666230309122819
  12. 12. Zamora F. Dealcoholised wines and low-alcohol wines. In: Moreno-Arribas MV, Bartolomé Suáldea B, editors. Wine safety, consumer preference and human health. Cham: Springer International Publishing; 2016. p. 163-82 https://doi.org/10.1007/978-3-319-24514-0_8
  13. 13. Lavelli V, Gallotti F, Pedrali D. Application of compounds from grape processing by-products: formulation of dietary fiber and encapsulated bioactive compounds. In: Food waste recovery. Elsevier; 2021. p. 355-66 https://doi.org/10.1016/B978-0-12-820563-1.00010-X
  14. 14. Inglis D, Almila A-M, editors. The globalization of wine. London: Bloomsbury Academic; 2019. https://doi.org/10.5040/9781474265027
  15. 15. Eller MR, De Almeida ELM, Campos LB, Montoya SG. Wild wines: the state of art. In: Trending topics on fermented foods. Switzerland: Springer Nature; 2024. p. 341-69 https://doi.org/10.1007/978-3-031-72000-0_13
  16. 16. Lohita B, Srijaya M. Novel technologies for shelf-life extension of food products as a competitive advantage: a review. Adv Sci Technol Innov. 2024;285-306. https://doi.org/10.1007/978-3-031-51647-4_24
  17. 17. Sandua D. Art and science of winemaking; 2023
  18. 18. Arias LA, Berli F, Fontana A, Bottini R, Piccoli P. Climate change effects on grapevine physiology and biochemistry: benefits and challenges of high altitude as an adaptation strategy. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.835425
  19. 19. Etkin NL. Edible medicines: an ethnopharmacology of food. Tucson (AZ): University of Arizona Press; 2008
  20. 20. Pacheco A, Santos J, Chaves S, Almeida J, Leão C, Sousa MJ. The emerging role of the yeast Torulaspora delbrueckii in bread and wine production: using genetic manipulation to study molecular basis of physiological responses. In: Eissa AA, editor. Structure and function of food engineering. London: InTech; 2012. p. 339-70 https://doi.org/10.5772/46024
  21. 21. Torres-Díaz LL, Murillo-Peña R, Iribarren M, De Urturi IS, Román SMS, González-Lázaro M, et al. Exploring Metschnikowia pulcherrima as a co-fermenter with Saccharomyces cerevisiae: influence on wine aroma during fermentation and ageing. Beverages. 2024;10(2):26. https://doi.org/10.3390/beverages10020026
  22. 22. Bartowsky EJ. Oenococcus oeni and malolactic fermentation - moving into the molecular arena. Aust J Grape Wine Res. 2005;11(2):174-87. https://doi.org/10.1111/j.1755-0238.2005.tb00286.x
  23. 23. Di Cagno R, Filannino P, Gobbetti M. Vegetable and fruit fermentation by lactic acid bacteria. In: Mozzi F, Raya RR, Vignolo GM, editors. Biotechnology of lactic acid bacteria: novel applications. Hoboken (NJ): Wiley; 2015. p. 216-30 https://doi.org/10.1002/9781118868386.ch14
  24. 24. Stojiljković M, Claes A, Deparis Q, Demeke MM, Subotić A, Foulquié-Moreno MR, et al. Whole-genome transformation of yeast promotes rare host mutations with a single causative SNP enhancing acetic acid tolerance. Mol Cell Biol. 2022;42(4). https://doi.org/10.1128/mcb.00560-21
  25. 25. Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective effects of melatonin on Saccharomyces cerevisiae under ethanol stress. Antioxidants. 2021;10(11):1735. https://doi.org/10.3390/antiox10111735
  26. 26. Khuabi LAJJN, Bardien F, De Beer A, Louw AJN, Koegelenberg A, Baxter A, et al. Transformation of learning and teaching in rehabilitation sciences: a case study from South Africa. Human Functioning Technol Health; 2022.
  27. 27. Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: a robust technology for enhancing consumer-preferred commercial traits in crops. Front Plant Sci. 2023;14. https://doi.org/10.3389/fpls.2023.1122940
  28. 28. San-Epifanio LE, Filibi I, López AL, Puigdomènech P, Larrabe JU. Possible EU futures for CRISPR-edited plants: little margin for optimism? Front Plant Sci. 2023;14. https://doi.org/10.3389/fpls.2023.1141455
  29. 29. Steakley J, Steakley B. Quest for quality wine, every time: a guide for root cause analysis. Cham: Springer; 2020. p. 1-4 https://doi.org/10.1007/978-3-030-34000-1_1
  30. 30. Yang H, Cai G, Lu J, Plaza EG. The production and application of enzymes related to the quality of fruit wine. Crit Rev Food Sci Nutr. 2020;61(10):1605-15. https://doi.org/10.1080/10408398.2020.1763251
  31. 31. Izquierdo-Bueno I, Moraga J, Cantoral JM, Carbú M, Garrido C, González-Rodríguez VE. Smart viniculture: applying artificial intelligence for improved winemaking and risk management. Appl Sci. 2024;14(22):10277. https://doi.org/10.3390/app142210277
  32. 32. Basalekou Μ. Monitoring wine maturation with alternative chemical analytical methods. PhD [thesis]. Athens: Agricultural University of Athens; 2019
  33. 33. Kurćubić VS, Stanišić N, Stajić SB, Dmitrić M, Živković S, Kurćubić LV, et al. Valorizing grape pomace: a review of applications, nutritional benefits and potential in functional food development. Foods. 2024;13(24):4169. https://doi.org/10.3390/foods13244169
  34. 34. Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Saurina J, Granados M, et al. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing. J Environ Manage. 2022;307:114555. https://doi.org/10.1016/j.jenvman.2022.114555
  35. 35. Barros MV, De Jesus RHG, Ribeiro BS, Piekarski CM. Going in circles: key aspects for circular economy contributions to agro-industrial cooperatives. Circ Econ Sustain. 2022;3(2):861-80. https://doi.org/10.1007/s43615-022-00211-8
  36. 36. Maza M, Álvarez I, Raso J. Thermal and non-thermal physical methods for improving polyphenol extraction in red winemaking. Beverages. 2019;5(3):47. https://doi.org/10.3390/beverages5030047
  37. 37. Aziz MB, Mouls L, Fulcrand H, Douieb H, Hajjaj H. Phenolic compounds of Moroccan red press wines: influence of fining agents and micro-oxygenation treatments. LWT. 2016;78:143-50. https://doi.org/10.1016/j.lwt.2016.12.034
  38. 38. Ferreira D, Moreira D, Costa EM, Silva S, Pintado MM, Couto JA. The antimicrobial action of chitosan against the wine spoilage yeast Brettanomyces/Dekkera. J Chitin Chitosan Sci. 2013;1(3):240-5. https://doi.org/10.1166/jcc.2013.1037
  39. 39. Ailer Š, Jakabová S, Benešová L, Ivanova-Petropulos V. Wine faults: state of knowledge in reductive aromas, oxidation and atypical aging, prevention and correction methods. Molecules. 2022;27(11):3535. https://doi.org/10.3390/molecules27113535
  40. 40. Waterhouse AL, Sacks GL, Jeffery DW. Understanding wine chemistry. 2nd ed. Hoboken (NJ): John Wiley & Sons; 2024. https://doi.org/10.1002/9781394258406
  41. 41. Gawel R, Van Sluyter S, Waters EJ. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust J Grape Wine Res. 2007;13(1):38-45. https://doi.org/10.1111/j.1755-0238.2007.tb00070.x
  42. 42. Neeley CR, Min KS, Kennett-Hensel PA. Contingent consumer decision making in the wine industry: the role of hedonic orientation. J Consum Mark. 2010;27(4):324-35. https://doi.org/10.1108/07363761011052369
  43. 43. Fernandes M, Júnior CF, Oliveira S, Martins R, Sampaio-Fernandes J, Figueiral M. In vitro comparative study of the surface properties of materials for removable prosthetic bases. Rev Port Estomatol Med Dent Cir Maxilofac; 2022.
  44. 44. Soares S, Brandão E, Mateus N, De Freitas V. Sensorial properties of red wine polyphenols: astringency and bitterness. Crit Rev Food Sci Nutr. 2015;57(5):937-48. https://doi.org/10.1080/10408398.2014.946468
  45. 45. De-La-Fuente-Blanco A, Sáenz-Navajas MP, Ferreira V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016;210:107-14. https://doi.org/10.1016/j.foodchem.2016.04.021
  46. 46. Maltman A. Minerality in wine: a geological perspective. J Wine Res. 2013;24(3):169-81. https://doi.org/10.1080/09571264.2013.793176
  47. 47. Nicola Senesi receives "Honoris Causa" from Institut National Polytechnique de Toulouse (INPT). Chem Int. 2001;23(4):118a. https://doi.org/10.1515/ci.2001.23.4.118a
  48. 48. Townshend E. Investigating the phenolic composition of orange wines: studying the effects of oxidation and skin contact on white wine tannin. J Agric Food Chem; 2018.
  49. 49. Ciubucă A, Cioroi OL, Enache V, Stoica MF. Viticultural technological links to maximize the color potential of quality red wines at SCDVV Bujoru. Ann Univ Craiova Ser Biol Hortic Food Prod Process Technol Environ Eng. 2022;27(63). https://doi.org/10.52846/bihpt.v27i63.24
  50. 50. Carpena M, Pereira AG, Prieto MA, Simal-Gandara J. Wine aging technology: fundamental role of wood barrels. Foods. 2020;9(9):1160. https://doi.org/10.3390/foods9091160
  51. 51. Williams JL. French varietals fight back: the revolution in the Vin de Pay d'Oc. Int J Wine Mark. 1995;7(3):5-13. https://doi.org/10.1108/eb008645
  52. 52. Goldstein R. Review of: Robert M Parker: Parker's wine bargains: the world's greatest wine values under $25. J Wine Econ. 2010;5(1):209-16. https://doi.org/10.1017/S193143610000153X
  53. 53. Dimopoulou M, Kefalloniti V, Tsakanikas P, Papanikolaou S, Nychas GJE. Assessing the biofilm formation capacity of the wine spoilage yeast Brettanomyces bruxellensis through FTIR spectroscopy. Microorganisms. 2021;9(3):587. https://doi.org/10.3390/microorganisms9030587
  54. 54. Friedman M. Antibacterial, antiviral and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J Agric Food Chem. 2014;62(26):6025-42. https://doi.org/10.1021/jf501266s
  55. 55. Fleming A. Investigating quality attributes and wine production methods of Arkansas-grown grapes. MSc [thesis]. Fayetteville (AR): University of Arkansas; 2022
  56. 56. Vink N. Review of: Work HH. Wood, whiskey and wine: a history of barrels. J Wine Econ. 2016;11(3):465-6. https://doi.org/10.1017/jwe.2016.31
  57. 57. Fotakis C, Andreou V, Christodouleas DC, Zervou M. The metabolic and antioxidant activity profiles of aged Greek grape marc spirits. Foods. 2024;13(11):1664. https://doi.org/10.3390/foods13111664
  58. 58. Li X, Gao P, Zhang C, Xiao X, Chen C, Song F. Aroma of peach fruit: a review on aroma volatile compounds and underlying regulatory mechanisms. Int J Food Sci Technol. 2023;58(10):4965-79. https://doi.org/10.1111/ijfs.16621
  59. 59. Separator skids for craft beer brewers. Filtr Sep. 2016;53(1):12. https://doi.org/10.1016/S0015-1882(16)30027-1
  60. 60. Bergqvist J, Dokoozlian N, Ebisuda N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. Am J Enol Vitic. 2001;52(1):1-7. https://doi.org/10.5344/ajev.2001.52.1.1
  61. 61. Farhan A. Active packaging applications for dairy-based hygroscopic foods. In: CRC Press eBooks. 2021. p. 101-18 https://doi.org/10.1201/9781003127789-9
  62. 62. De Celis M, Ruiz J, Martín-Santamaría M, Alonso A, Marquina D, Navascués E, et al. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett Appl Microbiol. 2019;68(6):580-8. https://doi.org/10.1111/lam.13155
  63. 63. Wang D, Wang Y, Pandiselvam R, Su D, Xu H. Comparative analysis of drying methods on Pleurotus eryngii: impact on drying efficiency, nutritional quality and flavor profile. Food Bioprocess Technol. 2024;17(12):4598-616. https://doi.org/10.1007/s11947-024-03402-3
  64. 64. Töpfl S, Heinz V. Pulsed electric fields (PEF) applications in food processing – process and equipment design and cost analysis. In: Proceedings of the 2008 IEEE 35th International Conference on Plasma Science; 2008 Jun 15–19; Karlsruhe, Germany. New York: IEEE; 2008. p. 1. https://doi.org/10.1109/PLASMA.2008.4590818
  65. 65. Pereira RN, Coelho MI, Genisheva Z, Fernandes JM, Vicente AA, Pintado ME, et al. Using ohmic heating effect on grape skins as a pretreatment for anthocyanins extraction. Food Bioprod Process. 2020;124:320-8. https://doi.org/10.1016/j.fbp.2020.09.009
  66. 66. Silva FVM, Borgo R, Guanziroli A, Ricardo-Da-Silva JM, Aguiar-Macedo M, Redondo LM. Pilot scale continuous pulsed electric fields treatments for vinification and stabilization of Arinto and Moscatel Graúdo (Vitis vinifera L.) white grape varieties: effects on sensory and physico-chemical quality of wines. Beverages. 2024;10(1):6. https://doi.org/10.3390/beverages10010006
  67. 67. Luque-Alcaraz AG, Hernández-Téllez CN, Graciano-Verdugo AZ, Toledo-Guillén AR, Hernández-Abril PA. Exploring antioxidant potential and phenolic compound extraction from Vitis vinifera L. using ultrasound-assisted extraction. Green Process Synth. 2024;13(1). https://doi.org/10.1515/gps-2023-0141
  68. 68. Spinei M, Oroian M. Microwave-assisted extraction of pectin from grape pomace. Sci Rep. 2022;12(1). https://doi.org/10.1038/s41598-022-16858-0
  69. 69. Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crops Prod. 2015;75:141-9. https://doi.org/10.1016/j.indcrop.2015.05.063
  70. 70. Jackson RS. Shelf life of wine. In: Jackson RS, editor. Wine science: principles and applications. San Diego: Academic Press; 2014. p. 311-46 https://doi.org/10.1016/B978-0-08-100435-7.00011-3
  71. 71. Arcena MR, Leong SY, Then S, Hochberg M, Sack M, Mueller G, et al. The effect of pulsed electric fields pre-treatment on the volatile and phenolic profiles of Merlot grape musts at different winemaking stages and the sensory characteristics of the finished wines. Innov Food Sci Emerg Technol. 2021;70:102698. https://doi.org/10.1016/j.ifset.2021.102698
  72. 72. Cotea VV, Buțerchi I, Colibaba LC, Luchian CE, Lipșa FD, Ulea E, et al. Impact of sulfur dioxide and dimethyl dicarbonate treatment on the quality of white wines: a scientific evaluation. Fermentation. 2025;11(2):86. https://doi.org/10.3390/fermentation11020086
  73. 73. Jackson RS. Shelf life of wine. In: Jackson RS, editor. Wine science: principles and applications. San Diego (CA): Academic Press; 2014. p. 311-46 https://doi.org/10.1016/B978-0-08-100435-7.00011-3
  74. 74. Tıraş ZŞE, Okur HH, Günay Z, Yıldırım HK. Different approaches to enhance resveratrol content in wine. Cienc Tecn Vitivinic. 2022;37(1):13-28. https://doi.org/10.1051/ctv/ctv20223701013
  75. 75. Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int J Mol Sci. 2021;22(2):630. https://doi.org/10.3390/ijms22020630
  76. 76. Marzocchella L, Fantini M, Benvenuto M, Masuelli L, Tresoldi I, Modesti A, et al. Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents. Recent Pat Inflamm Allergy Drug Discov. 2011;5(3):200-20. https://doi.org/10.2174/187221311797264937
  77. 77. Mason R, Butterfint Z, Allen R, Bygrave K, Gelder E, Pomroy E. Learning about professionalism within practice-based education: what are we looking for? Int J Pract Based Learn Health Soc Care. 2015;3(1):1-15. https://doi.org/10.18552/ijpblhsc.v3i1.199
  78. 78. De Lorgeril M, Salen P, Guiraud A, Boucher F, De Leiris J. Resveratrol and non-ethanolic components of wine in experimental cardiology. Nutr Metab Cardiovasc Dis. 2003;13(2):100-3. https://doi.org/10.1016/S0939-4753(03)80025-X
  79. 79. Costanzo S, Di Castelnuovo A, Donati MB, Iacoviello L, De Gaetano G. Alcohol consumption and mortality in patients with cardiovascular disease. J Am Coll Cardiol. 2010;55(13):1339-47. https://doi.org/10.1016/j.jacc.2010.01.006
  80. 80. Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, May ME, Gharbi N, et al. Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci. 2006;80(11):1033-9. https://doi.org/10.1016/j.lfs.2006.11.044
  81. 81. Csaki C, Mobasheri A, Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1β-induced NF-κB-mediated inflammation and apoptosis. Arthritis Res Ther. 2009;11(6). https://doi.org/10.1186/ar2850
  82. 82. Jia Y, Wang N, Liu X. Resveratrol and amyloid-beta: mechanistic insights. Nutrients. 2017;9(10):1122. https://doi.org/10.3390/nu9101122
  83. 83. Teissedre PL, Rasines-Perea Z, Ruf JC, Stockley C, Antoce AO, Romano R, et al. Effects of alcohol consumption in general and wine in particular, on the risk of cancer development: a review. OENO One. 2020;54(4):813-32. https://doi.org/10.20870/oeno-one.2020.54.4.3569
  84. 84. Skovenborg E, Grønbæk M, Ellison RC. Benefits and hazards of alcohol-the J-shaped curve and public health. Drugs Alcohol Today. 2020;21(1):54-69. https://doi.org/10.1108/DAT-09-2020-0059
  85. 85. Zhou Y, Zheng J, Li S, Zhou T, Zhang P, Li HB. Alcoholic beverage consumption and chronic diseases. Int J Environ Res Public Health. 2016;13(6):522. https://doi.org/10.3390/ijerph13060522
  86. 86. Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of red wine consumption on cardiovascular health. Curr Med Chem. 2017;26(19):3542-66. https://doi.org/10.2174/0929867324666170518100606
  87. 87. Tomada I, Andrade JP. Science-based anti-ageing nutritional recommendations. In: Anti-ageing nutrients: Evidence-based prevention of age-associated diseases. 2015. p. 333-90 https://doi.org/10.1002/9781118823408.ch11
  88. 88. Anand SS, Hawkes C, De Souza RJ, Mente A, Dehghan M, Nugent R, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system. J Am Coll Cardiol. 2015;66(14):1590-614. https://doi.org/10.1016/j.jacc.2015.07.050
  89. 89. Fernández-Solà J. The effects of ethanol on the heart: alcoholic cardiomyopathy. Nutrients. 2020;12(2):572. https://doi.org/10.3390/nu12020572
  90. 90. Ahmad B, Yadav V, Yadav A, Rahman MU, Yuan WZ, Li Z, et al. Integrated biorefinery approach to valorize winery waste: a review from waste to energy perspectives. Sci Total Environ. 2020;719:137315. https://doi.org/10.1016/j.scitotenv.2020.137315
  91. 91. Chang JS, Hsiao JR, Chen CH. ALDH2 polymorphism and alcohol-related cancers in Asians: a public health perspective. J Biomed Sci. 2017;24(1). https://doi.org/10.1186/s12929-017-0327-y
  92. 92. Wang M, Yu F, Zhang Y, Chang W, Zhou M. The effects and mechanisms of flavonoids on cancer prevention and therapy: focus on gut microbiota. Int J Biol Sci. 2022;18(4):1451-75. https://doi.org/10.7150/ijbs.68170
  93. 93. More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández-Jerez A, et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J. 2021;19(8). https://doi.org/10.2903/j.efsa.2021.6768
  94. 94. Adeleke I, Nwulu N, Adebo OA. Internet of things (IoT) in the food fermentation process: a bibliometric review. J Food Process Eng. 2023;46(5). https://doi.org/10.1111/jfpe.14321
  95. 95. Costa A, Presenza A, Abbate T, Cesaroni F. The adoption of artificial intelligence by low-tech firms: a preliminary analysis on the wine industry [preprint]. SSRN; 2024. https://doi.org/10.2139/ssrn.4784556
  96. 96. Machado ND, Fernández MA, Díaz DD. Recent strategies in resveratrol delivery systems. ChemPlusChem. 2019;84(7):951-73. https://doi.org/10.1002/cplu.201900267
  97. 97. Kereth GA, Marcel MR. Consumer awareness on pre-packaged food labelling information towards the purchase of the pre-packaged food products. Res J Adv Humanit. 2021;2(2). https://doi.org/10.58256/rjah.v2i2.572
  98. 98. Marchev AS, Georgiev MI. Plant in vitro systems as a sustainable source of active ingredients for cosmeceutical application. Molecules. 2020;25(9):2006. https://doi.org/10.3390/molecules25092006
  99. 99. Liu D, Zhang P, Chen D, Howell K. From the vineyard to the winery: how microbial ecology drives regional distinctiveness of wine. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.02679

Downloads

Download data is not yet available.