Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 8 No. 1 (2021)

Chemical profile and antibacterial activity of acetone extract of Homalomena cochinchinensis Engl. (Araceae)

DOI
https://doi.org/10.14719/pst.2021.8.1.971
Submitted
22 September 2020
Published
01-01-2021

Abstract

Homalomena cochinchinensis Engl. is a rare species which is found in Southern China, Cambodia, Laos and Vietnam and its chemical constituents and bioactivity have not been determined yet. In this study, we identified 32 and 38 compounds in acetone extracts of H. cochinchinensis aerial part and rhizome, respectively via gas chromatography mass spectrometry (GC/MS). The main constituents of acetone extract of the aerial part were 3-((4Z,7Z)-Heptadeca-4,7-dien-1-yl)phenol (18.73%); cis-9,cis-12-Octadecadienoic acid (12.04%); linolenic acid (11.08%); n-Hexadecanoic acid (10.13%); (Z)-3-(Heptadec-10-en-1-yl)phenol (7.09%); ?-Sitosterol (5.58%) and linalool (5.56%). On the other hand, acetone extract of rhizome contained linalool (28.42%); 1,2,3-Propanetriol, 1-acetate (10.13%); 3-((4Z,7Z)-Heptadeca-4,7-dien-1-yl)phenol (5.28%); 3-Buten-2-one, 3-methyl-4-(1,3,3-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)- (5.28%) and 4-(2,6,6-Trimethyl-cyclohex-1-enyl)-butyric acid (4.54%). Furthermore, this study has also proved the antibacterial activity of acetone extracts from the aerial part and the rhizome of this species for the first time using disk diffusion method. The results showed that the extract of the aerial part could inhibit the growth of 5 out of a total 6 bacterial strains, including Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis and Staphylococcus aureus; while the susceptible strains to the rhizome extract were 5 strains, such as B. cereus, E. coli, P. aeruginosa, Salmonella typhimurium and S. aureus. The findings suggest the further application of this species in pharmacology and medicine.

References

  1. Ahn K. The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Reports. 2017; 50(3):111-16. http://doi.org/10.5483/bmbrep.2017.50.3.221
  2. Mahesh B, Satish S. Antimicrobial activity of some important medicinal plant against plant and human pathogens. World Journal of Agricultural Sciences. 2008;4:839-43.
  3. Boyce PC, Sookchaloem D, Hetterscheid WLA, Gusman G, Jacobsen J, Idei T, Nguyen VD. Araceae. The Flora of Thailand. 2012;11:101-321.
  4. Van HT. Building phylogenetic trees for the Araceae in southern Vietnam based on morphological and molecular markers. Doctoral thesis, Graduate University Science and Technology, Vietnam Academy of Science and Technology, Vietnam. 2017.
  5. Pham HH. Araceae. In: Pham-hoang H. (editor.), An Illustrated Flora of Vietnam, Vol. III. Youth Publishing House, Ho Chi Minh City, Vietnam. 2000.
  6. Policegoudra RS, Goswami S, Aradhya SM. Bioactive constituents of Homalomena aromatica essential oil and its antifungal activity against dermatophytes and yeasts. Journal de Mycologie Médicale. 2012;22:83-87. http://doi.org/10.1016/j.mycmed.2011.10.007
  7. Shukla AC, Lalsangluaii F, Singh B. Homalomena aromatica: an ethnomedicinal plant can be a potential source of antimicrobial drug development. European Journal of Environmental Ecology. 2015;2:96-104.
  8. Yang JL, Zhao YM, Shi YP. Sesquiterpenoids from the Rhizomes of Homalomena occulta. Natural Products and Bioprospecting. 2016;6:211-16. http://doi.org/10.1055/s-0031-1298539
  9. Bobinaite R, Viskelis P, Sarkinas A, Venskutonis PR. Phytochemical composition, antioxidant and antimicrobial properties of raspberry fruit, pulp, and marc extract. Journal of Food. 2013;11(4):334-42. http://doi.org/10.1080/19476337.2013.766265
  10. Clinical and Laboratory Standards Institute, Methods for Antimicrobial Dilution and Disk Susceptibility of Infrequently Isolated or Fastidious Bacteria, Approved Guideline, 2nd. ed., CLSI document M45-A2. Clinical and Laboratory Standards Institute, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA. 2010.
  11. Pereira I, Severino P, Santos AC, Silva AM, Souto EB. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces. 2018;171:566-78. http://doi.org/ 10.1016/j.colsurfb.2018.08.001
  12. Yadav E, Rao R. A promising bioactive component terpinen-4-ol: a review. International Journal of Pharmacognosy. 2016;1:336-45.
  13. Shapira S, Pleban S, Kazanov D, Tirosh P, Arber N. Terpinen-4-ol: A novel and promising therapeutic agent for human gastrointestinal cancers. PLoS One. 2016;11(6):e0156540. http://doi.org/10.1371/journal.pone.0156540
  14. Aparna V, Dileep KV, Mandal PK. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chemical Biology & Drug Design. 2012;80(3):434-39. http://doi.org/10.1111/j.1747-0285.2012.01418.x
  15. Santos CC, Salvadori MS, Mota VG, et al. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neuroscience. 2013;949-52. http://doi.org/10.1155/2013/949452
  16. Balamurugan R, Duraipandiyan V, Ignacimuthu S. Antidiabetic activity of ?-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. European Journal of Pharmacology. 2011;667(1-3):410-18. http://doi.org/10.1016/j.ejphar.2011.05.025
  17. Gabay O, Sanchez C, Salvat C, Chevy F, Breton M, Nourissat G et al. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthritis Cartilage. 2010;18(1):106-16. http://doi.org/10.1016/j.joca.2009.08.019
  18. Zeb MA, Khan SU, Rahman TU, et al. Isolation and biological activity of ?-sitosterol and stigmasterol from the roots of Indigofera heterantha. Pharm Pharmacol Int J. 2017;5(5):204-07. http://doi.org/10.15406/ppij.2017.05.00139
  19. Batta AK, Xu G, Honda A, Miyazaki T, Salen G. Stigmasterol reduces plasma cholesterol levels and inhibits hepatic synthesis and intestinal absorption in the rat. Metabolism. 2006;55(3):292-99. http://doi.org/ 10.1016/j.metabol.2005.08.024
  20. Herman A, Tambor K, Herman A. Linalool Affects the Antimicrobial efficacy of essential Oils. Current Microbiology. 2016;72:165-72. http://doi.org/10.1007/s00284-015-0933-4
  21. Wu Q, Yu L, Qiu J, Shen B, Wang D, Soromou LW, Feng H. Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway. International Immunopharmacology. 2014;21:456-63. http://doi.org/10.1016/j.intimp.2014.05.030
  22. Huang CB, George B, Ebersole JL. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Archives of Oral Biology. 2010;55(5):555-60. http://doi.org/ 10.1016/j.archoralbio.2010.05.009
  23. Abubakar MN, Majinda RRT. GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) W. Wight and Pterocarpus angolensis DC. Medicines. 2016;3(3):1-8. http://doi.org/ 10.3390/medicines3010003
  24. Liliwirianis N, Wan ZWMZ, Jamaluddin K, Shaikh AK. Antimicrobial activity of plant extracts against Bacillus subtilis, Staphylococcus aureus and Escherichia coli. E-Journal of Chemistry. 2011;8:282-84. http://doi.org/10.1155/2011/824697
  25. Wong KC, Hamid A, Eldeen IMS, Asmawi MZ, Baharuddin S, Abdillahi HS, Stadend JV. A new sesquiterpenoid from the rhizomes of Homalomena sagittifolia. Natural Product Research. 2012;26(9):850-58. http://doi.org/ 10.1080/14786419.2010.551770
  26. Rozman NAS, Yenn TW, Tan WN, Ring LC, Yusof FA, Sulaiman B. Homalomena pineodora, a Novel essential oil bearing plant and its antimicrobial activity against diabetic wound pathogens. Journal of Essential Oil Bearing Plants. 2018;21:963-71. http://doi.org/10.1080/0972060X.2018.1526129

Downloads

Download data is not yet available.