Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

The AI-viticulture nexus: Robotics and precision technologies for sustainable vineyards

DOI
https://doi.org/10.14719/pst.9713
Submitted
30 May 2025
Published
25-08-2025 — Updated on 16-09-2025
Versions

Abstract

Automation technologies, such as Artificial Intelligence (AI), robotics, IoT and remote sensing, are transforming viticulture by addressing labour shortages, climate resilience challenges and resource optimization. AI-driven machine learning models process data from multispectral drones and IoT sensors to monitor soil health, water stress and canopy dynamics, enabling precision agriculture practices like targeted irrigation and nutrient delivery. Autonomous robotic systems perform tasks such as selective harvesting, pruning and pest management, enhancing operational efficiency while reducing manual labour. IoT networks provide real-time insights into microclimatic conditions, empowering growers to adopt climate-smart strategies that minimize chemical inputs and improve yield stability. Despite progress, key barriers persist: AI models require terroir-specific adaptation, fragmented datasets hinder interoperability and field validation of autonomous systems under diverse conditions remains limited. Future research must prioritize accessible solutions: low-cost sensor networks for smallholders, adaptive AI frameworks for climate volatility (e.g., drought or flood prediction) and edge computing for real-time analytics. Ethical concerns data privacy, algorithmic bias and technology access disparities demand inclusive governance. Additionally, user-friendly interfaces are essential for broad adoption. Addressing these gaps will unlock automation’s full potential in advancing sustainable viticulture: optimizing water/energy use, reducing agrochemical reliance, enhancing biodiversity and ensuring economic resilience for growers. Ultimately, integrated automation promises a balance between ecological stewardship, resource efficiency and sector-wide viability in a climate-constrained future.

References

  1. 1. Jones GV, White MA, Cooper OR, Storchmann K. Climate change and global wine quality. Climatic Change. 2005;73(3):319-43. https://doi.org/10.1007/s10584-005-4704-2
  2. 2. Botterill T, Paulin S, Green R, Williams S, Lin J, Saxton V, et al. A robot system for pruning grape vines. Journal of Field Robotics. 2017;34(6):1100-22. https://doi.org/10.1002/rob.21680
  3. 3. Naveed M. The adoption of 4.0 agriculture for wine production in order to improve efficiency, sustainability and competitiveness. PhD [thesis]. Università degli Studi di Foggia; 2024. https://doi.org/10.14274/naveed-mubshair_phd2024
  4. 4. Upadhyay A, Patel A, Patel A, Chandel NS, Chakraborty SK, Bhalekar DG. Leveraging AI and ML in precision farming for pest and disease management: benefits, challenges and future prospects. In: Jatav HS, Raiput VD, Minkina T, editors. Ecologically mediated development. Singapore: Springer; 2025. p. 511-28 https://doi.org/10.1007/978-981-96-2413-3_23
  5. 5. Sharma K, Shivandu SK. Integrating artificial intelligence and internet of things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International. 2024;5:100292. https://doi.org/10.1016/j.sintl.2024.100292
  6. 6. Hundal GS, Laux CM, Buckmaster D, Sutton MJ, Langemeier M. Exploring barriers to the adoption of internet of things-based precision agriculture practices. Agriculture. 2023;13(1):163. https://doi.org/10.3390/agriculture13010163
  7. 7. Folorunso A, Olanipekun K, Adewumi T, Samuel B. A policy framework on AI usage in developing countries and its impact. Global Journal of Engineering and Technology Advances. 2024;21(01):154-66. https://doi.org/10.30574/gjeta.2024.21.1.0192
  8. 8. Dellermann D, Calma A, Lipusch N, Weber T, Weigel S, Ebel P, et al. The future of human-AI collaboration: a taxonomy of design knowledge for hybrid intelligence systems. arXiv. 2021;2105.03354. https://doi.org/10.48550/arXiv.2105.03354
  9. 9. Jangirala S, Das AK, Vasilakos AV. Designing secure lightweight blockchain-enabled RFID-based authentication protocol for supply chains in 5G mobile edge computing environment. IEEE Transactions on Industrial Informatics. 2019;16(11):7081-93. https://doi.org/10.1109/TII.2019.2942389
  10. 10. Sampath V, Rangarajan N, Sharanappa C, Deori M, Veeraragavan M, Ghodake B, et al. Advancing crop improvement through CRISPR technology in precision agriculture trends-a review. International Journal of Environment and Climate Change. 2023;13(11):4683-94. https://doi.org/10.9734/ijecc/2023/v13i113647
  11. 11. Lidder P, Cattaneo A, Chaya M. Innovation and technology for achieving resilient and inclusive rural transformation. Global Food Security. 2025;44:100827. https://doi.org/10.1016/j.gfs.2025.100827
  12. 12. Velasquez-Camacho L, Otero M, Basile B, Pijuan J, Corrado G. Current trends and perspectives on predictive models for mildew diseases in vineyards. Microorganisms. 2022;11(1):73. https://doi.org/10.3390/microorganisms11010073
  13. 13. Portela F, Sousa JJ, Araújo-Paredes C, Peres E, Morais R, Pádua L. A systematic review on the advancements in remote sensing and proximity tools for grapevine disease detection. Sensors. 2024;24(24):8172. https://doi.org/10.3390/s24248172
  14. 14. Khan KH, Aljaedi A, Ishtiaq MS, Imam H, Bassfar Z, Jamal SS. Disease detection in grape cultivation using strategically placed cameras and machine learning algorithms with a focus on powdery mildew and blotches. IEEE Access; 2024.
  15. 15. Aldossary M, Almutairi J, Alzamil I. Federated LeViT-ResUNet for scalable and privacy-preserving agricultural monitoring using drone and internet of things data. Agronomy. 2025;15(4):928. https://doi.org/10.3390/agronomy15040928
  16. 16. Durrant A, Markovic M, Matthews D, May D, Enright J, Leontidis G. The role of cross-silo federated learning in facilitating data sharing in the agri-food sector. Computers and Electronics in Agriculture. 2022;193:106648. https://doi.org/10.1016/j.compag.2021.106648
  17. 17. MirhoseiniNejad SM, Abbasi-Moghadam D, Sharifi A. ConvLSTM-ViT: A deep neural network for crop yield prediction using earth observations and remotely sensed data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 2024. https://doi.org/10.1109/JSTARS.2024.3464411
  18. 18. Pesce L. Machine learning for predicting grape quality using spectral imaging techniques. Data Science and Engineering, MSc [thesis]. Turin (IT): Politecnico di Torino; 2024.
  19. 19. D Dottori E. Adaptation strategies to climate change in vineyard: innovation in vine training and pruning system, and cover crops. MSc [thesis]. Ancona (IT): Università Politecnica delle Marche; 2023.
  20. 20. B Bourzig DKD, Abed M, Merah M. Powdery mildew disease classification in laboratory and real-field images using convolutional neural networks for precision agriculture. In: Proceedings of the 2024 1st International Conference on Innovative and Intelligent Information Technologies (IC3IT); 2024 Dec 3–5; Batna, Algeria. Piscataway (NJ): IEEE; 2024. https://doi.org/10.1109/IC3IT63743.2024.10869354
  21. 21. Li Y, Wang J, Wu H, Yu Y, Sun H, Zhang H. Detection of powdery mildew on strawberry leaves based on DAC-YOLOv4 model. Computers and Electronics in Agriculture. 2022;202:107418. https://doi.org/10.1016/j.compag.2022.107418
  22. 22. Wang H, Qiu S, Ye H, Liao X. A plant disease classification algorithm based on attention MobileNet V2. Algorithms. 2023;16(9):442. https://doi.org/10.3390/a16090442
  23. 23. Singh AK, Rao A, Chattopadhyay P, Maurya R, Singh L. Effective plant disease diagnosis using Vision Transformer trained with leafy-generative adversarial network-generated images. Expert Systems with Applications. 2024;254:124387. https://doi.org/10.1016/j.eswa.2024.124387
  24. 24. Mohimont L, Alin F, Gaveau N, Steffenel LA, editors. Lite CNN models for real-time post-harvest grape disease detection. Workshops at 18th International Conference on Intelligent Environments (IE2022); 2022. https://doi.org/10.3233/AISE220029
  25. 25. Zhang H, Ren G. Intelligent leaf disease diagnosis: image algorithms using Swin Transformer and federated learning. The Visual Computer. 2024:1-24. https://doi.org/10.1007/s00371-024-03692-w
  26. 26. Nyakuri JP, Nkundineza C, Gatera O, Nkurikiyeyezu K. State-of-the-art deep learning algorithms for Internet of Things-based detection of crop pests and diseases: a comprehensive review. IEEE Access. 2024.
  27. 27. Ashoka P, Devi BR, Sharma N, Behera M, Gautam A, Jha A, et al. Artificial intelligence in water management for sustainable farming: a review. Journal of Scientific Research and Reports. 2024;30(6):511-25. https://doi.org/10.9734/jsrr/2024/v30i62068
  28. 28. Seyar MH, Ahamed T. Optimization of soil-based irrigation scheduling through the integration of machine learning, remote sensing and soil moisture sensor technology. In: Ahamed T, editor. IoT and AI in agriculture. Singapore: Springer; 2024.2024. https://doi.org/10.1007/978-981-97-1263-2_18
  29. 29. Pooja K, Anandan P. Precision agronomy: leveraging technology for enhanced crop management. Singapore: Textify Publishers; 2024.
  30. 30. Sathya D, Thangamani R, Balaji BS. The revolution of edge computing in smart farming. In: Intelligent robots and drones for precision agriculture. Singapore: Springer; 2024:351-89. https://doi.org/10.1007/978-3-031-51195-0_17
  31. 31. Wang C, Pan W, Zou T, Li C, Han Q, Wang H, et al. A review of perception technologies for berry fruit-picking robots: advantages, disadvantages, challenges and prospects. Agriculture. 2024;14(8):1346. https://doi.org/10.3390/agriculture14081346
  32. 32. Teng T. Research on grapevine recognition, manipulation and winter pruning automation. PhD [thesis]. Milan: Università Cattolica del Sacro Cuore; 2023.
  33. 33. Upadhyay A, Zhang Y, Koparan C, Rai N, Howatt K, Bajwa S, et al. Advances in ground robotic technologies for site-specific weed management in precision agriculture: a review. Computers and Electronics in Agriculture. 2024;225:109363. https://doi.org/10.1016/j.compag.2024.109363
  34. 34. Nell N. Advanced vineyard based long range sensor networks. Stellenbosch University; 2022.
  35. 35. Vladucu M-V, Wu H, Medina J, Salehin KM, Dong Z, Rojas-Cessa R. Blockchain in environmental sustainability measures: a survey. arXiv preprint arXiv:241215261; 2024.
  36. 36. Masere TP, Worth SH. Factors influencing adoption, innovation of new technology and decision-making by small-scale resource constrained farmers: the perspective of farmers in lower Gweru, Zimbabwe. African Journal of Food, Agriculture, Nutrition and Development. 2022;22(3):20013-35. https://doi.org/10.18697/ajfand.108.20960
  37. 37. Blessing E, Hubert K. Technological infrastructure and challenges: integration challenges in implementing AI solutions in legacy systems. London: Figshare; 2024.
  38. 38. Olaoye G. Neuromorphic computing and the cloud: the next frontier in AI processing. SSRN; 2025. https://doi.org/10.2139/ssrn.5129536
  39. 39. George IE, Iniobong UU, Okhionkpamwunyi EP. The use of artificial intelligence in tractor field operations: a review. Poljoprivredna tehnika; 2022;47(4):1-14. https://doi.org/10.5937/poljteh2204001g
  40. 40. Gao Y, Spiteri C, Pham M-T, Al-Milli S. A survey on recent object detection techniques useful for monocular vision-based planetary terrain classification. Robotics and Autonomous Systems. 2014;62(2):151-67. https://doi.org/10.1016/j.robot.2013.11.003
  41. 41. Jensen TA, Antille DL, Tullberg JN. Improving on-farm energy use efficiency by optimizing machinery operations and management: a review. Agricultural Research. 2025;14(1):15-33. https://doi.org/10.1007/s40003-024-00824-5
  42. 42. Xu S. Vision-based autonomy stacks for farm tractors and intelligent spraying systems in orchards. Clemson University; 2024.
  43. 43. Jiang Y, Liu J, Wang J, Li W, Peng Y, Shan H. Development of a dual-arm rapid grape-harvesting robot for horizontal trellis cultivation. Frontiers in Plant Science. 2022;13:881904. https://doi.org/10.3389/fpls.2022.881904
  44. 44. Mendelson R, Steinhauer R. Napa Valley viticulture: a farmer’s outlook. Wines & Vines. 2011;92(11):32-9.
  45. 45. Agelli M, Corona N, Maggio F, Moi PV. Unmanned ground vehicles for continuous crop monitoring in agriculture: assessing the readiness of current ICT technology. Machines. 2024;12(11):750. https://doi.org/10.3390/machines12110750
  46. 46. Camel A, Belhadi A, Kamble S, Tiwari S, Touriki FE. Integrating smart green product platforming for carbon footprint reduction: the role of blockchain technology and stakeholders influence within the agri-food supply chain. International Journal of Production Economics. 2024;272:109251. https://doi.org/10.1016/j.ijpe.2024.109251
  47. 47. Dhillon R, Moncur Q. Small-scale farming: a review of challenges and potential opportunities offered by technological advancements. Sustainability. 2023;15(21):15478. https://doi.org/10.3390/su152115478
  48. 48. Ahern D. Regulatory lag, regulatory friction and regulatory transition as FinTech disenablers: calibrating an EU response to the regulatory sandbox phenomenon. European Business Organization Law Review. 2021;22(3):395-432. https://doi.org/10.1007/s40804-021-00217-z
  49. 49. Kashyap B, Kumar R. Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access. 2021;9:14095-121. https://doi.org/10.1109/ACCESS.2021.3052478
  50. 50. Schlank R, Kidman CM, Gautam D, Jeffery DW, Pagay V. Data-driven irrigation scheduling increases the crop water use efficiency of Cabernet Sauvignon grapevines. Irrigation Science. 2024;42(1):29-44. https://doi.org/10.1007/s00271-023-00866-7
  51. 51. Trilles Oliver S, González-Pérez A, Huerta Guijarro J. Adapting models to warn fungal diseases in vineyards using in-field internet of things (IoT) nodes. Sustainability. 2019;11(2):416. https://doi.org/10.3390/su11020416
  52. 52. Jawad HM, Nordin R, Gharghan SK, Jawad AM, Ismail M. Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors. 2017;17(8):1781. https://doi.org/10.3390/s17081781
  53. 53. Khaliq A. Advancements in multi-temporal remote sensing data analysis techniques for precision agriculture. PhD [thesis]. Turin: Politecnico di Torino; 2020.
  54. 54. Dalezios NR, Faraslis IN. Remote sensing in agricultural production assessment. In: Vlontzos G, Ampatzidis Y, Manos B, Pardalos PM, editors. Modeling for sustainable management in agriculture, food and the environment. Boca Raton (FL): CRC Press; 2022. p. 172–98 https://doi.org/10.1201/9780429197529-6
  55. 55. Devine S. Soil ecosystem services at statewide and catchment scales: a climate change perspective. PhD [thesis]. Davis (CA): University of California; 2019.
  56. 56. Gu M. Improved Kalman filtering and adaptive weighted fusion algorithms for enhanced multi-sensor data fusion in precision measurement. Informatica. 2025;49(10). https://doi.org/10.31449/inf.v49i10.7122
  57. 57. Sharma H, Haque A, Jaffery ZA. Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring. Ad Hoc Networks. 2019;94:101966. https://doi.org/10.1016/j.adhoc.2019.101966
  58. 58. Backman J, Linkolehto R, Koistinen M, Nikander J, Ronkainen A, Kaivosoja J, et al. Cropinfra research data collection platform for ISO 11783 compatible and retrofit farm equipment. Computers and Electronics in Agriculture. 2019;166:105008. https://doi.org/10.1016/j.compag.2019.105008
  59. 59. Gammanpila H, Sashika MN, Priyadarshani S. Advancing horticultural crop loss reduction through robotic and AI technologies: innovations, applications and practical implications. Advances in Agriculture. 2024;2024(1):2472111. https://doi.org/10.1155/2024/2472111
  60. 60. Van Der Woude AM, Peters W, Joetzjer E, Lafont S, Koren G, Ciais P, et al. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nature Communications. 2023;14(1):6218. https://doi.org/10.1038/s41467-023-41851-0
  61. 61. Gatou P, Tsiara X, Spitalas A, Sioutas S, Vonitsanos G. Artificial intelligence techniques in grapevine research: a comparative study with an extensive review of datasets, diseases and techniques evaluation. Sensors. 2024;24(19):6211. https://doi.org/10.3390/s24196211
  62. 62. Rogiers SY, Greer DH, Liu Y, Baby T, Xiao Z. Impact of climate change on grape berry ripening: an assessment of adaptation strategies for the Australian vineyard. Frontiers in Plant Science. 2022;13:1094633. https://doi.org/10.3389/fpls.2022.1094633
  63. 63. Ye W, Xu W, Yan T, Yan J, Gao P, Zhang C. Application of near-infrared spectroscopy and hyperspectral imaging combined with machine learning algorithms for quality inspection of grape: a review. Foods. 2022;12(1):132. https://doi.org/10.3390/foods12010132
  64. 64. Farhan SM, Yin J, Chen Z, Memon MS. A comprehensive review of LiDAR applications in crop management for precision agriculture. Sensors. 2024;24(16):5409. https://doi.org/10.3390/s24165409
  65. 65. Ferro MV, Catania P, Micciche D, Pisciotta A, Vallone M, Orlando S. Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosystems Engineering. 2023;231:36-56. https://doi.org/10.1016/j.biosystemseng.2023.06.001
  66. 66. Taylor JA, Bates TR, Jakubowski R, Jones H. Machine-learning methods to identify key predictors of site-specific vineyard yield and vine size. American Journal of Enology and Viticulture. 2023;74(1). https://doi.org/10.5344/ajev.2022.22050
  67. 67. Santosh K, Gaur L. Artificial intelligence and machine learning in public healthcare: opportunities and societal impact. Springer Nature; 2022. https://doi.org/10.1007/978-981-16-6768-8
  68. 68. Gopalakrishna Pillai S, Ngcobo-Onunkwo P, Al Rooq Y. Transparency uncorked: leveraging blockchain to tackle international wine fraud. Journal of Hospitality & Tourism Cases; 2024. https://doi.org/10.1177/21649987241290984
  69. 69. Diago MP. Vineyard water management. Advanced automation for tree fruit orchards and vineyards. Springer. 2023:75-92. https://doi.org/10.1007/978-3-031-26941-7_4
  70. 70. Carella A, Bulacio Fischer PT, Massenti R, Lo Bianco R. Continuous plant-based and remote sensing for determination of fruit tree water status. Horticulturae. 2024;10(5):516. https://doi.org/10.3390/horticulturae10050516
  71. 71. Das GP, Gould I, Zarafshan P, Heselden J, Badiee A, Wright I, et al. Applications of robotic and solar energy in precision agriculture and smart farming. Solar energy advancements in agriculture and food production systems. Elsevier. 2022:351-90. https://doi.org/10.1016/B978-0-323-89866-9.00011-0
  72. 72. Zanzotti R, Bertoldi D, Baldantoni D, Morelli R. Soil fertility and agronomic performance of green manure in vineyard. In: Proceedings of the IV Convegno AISSA# under 40; 2023 Jul 12–13; Fisciano (SA), Italy. Fisciano: AISSA. 2023. p. 142.
  73. 73. Bazán D. Alternatives to traditional agricultural biomass burning in Napa Valley. Environmental Management, MSc [project]. San Francisco: University of San Francisco; 2018.
  74. 74. Dhakshayani J, Surendiran B. M2F-Net: a deep learning-based multimodal classification with high-throughput phenotyping for identification of overabundance of fertilizers. Agriculture. 2023;13(6):1238. https://doi.org/10.3390/agriculture13061238
  75. 75. Rathod S, Kushwaha H, Kumar A, Khura TK, Kumar R, Dass A, et al. Comparative analysis on cost-economics evaluation of robotic tiller-planter against conventional tillage and planting operations. Int J Env Clim Change. 2024;14(1):433-42. https://doi.org/10.9734/ijecc/2024/v14i13853
  76. 76. Ghate U, Nydu P, Verma H, Ashraf S. Climate change and NTFP livelihood implications for the tribal. New Delhi: Indo Global Social Service Society; 2015. CCD report.
  77. 77. Prasath VT, Reddy G, Kaanth K, Madanmohan Reddy K. Smart-Agro: enhancing crop management with Agribot. J IoT Soc Mobile Anal Cloud. 2024;6(3):212-26. https://doi.org/10.36548/jismac.2024.3.002
  78. 78. Nuwarapaksha TD, Udumann SS, Dissanayaka NS, Dilshan R, Atapattu AJ. AI driven solutions for sustainable irrigation: exploring smart technologies to enhance conservation and efficiency. In: Integrating agriculture, green marketing strategies and artificial intelligence. Hershey: IGI Global Scientific Publishing. 2025:1-32. https://doi.org/10.4018/979-8-3693-6468-0.ch001
  79. 79. Le Bellec F, Vélu A, Fournier P, Le Squin S, Michels T, Tendero A, et al. Helping farmers to reduce herbicide environmental impacts. Ecological Indicators. 2015;54:207-16. https://doi.org/10.1016/j.ecolind.2015.02.020
  80. 80. Jujjavarapu G, Hickok E, Sinha A, Mohandas S, Ray S, Bidare PM, et al. AI and the manufacturing and services industry in India. Bengaluru: Centre for Internet and Society; 2018.
  81. 81. Khobragade PJ, Bhatnagar P, Nigam S. Adoption of agritech innovations by the sugarcane industry in Maharashtra and Uttar Pradesh: a comparative analysis. IUP Journal of Operations Management. 2024;23(4):44-61.
  82. 82. Ardon O, Asa SL, Lloyd MC, Lujan G, Parwani A, Santa-Rosario JC, et al. Understanding the financial aspects of digital pathology: a dynamic customizable return on investment calculator for informed decision-making. Journal of Pathology Informatics. 2024;15:100376. https://doi.org/10.1016/j.jpi.2024.100376
  83. 83. Raza S. Innovative technologies in agriculture: leveraging AI, ML and IoT for sustainable food production and resource management. Int J Agric Sustain Develop. 2024;6(3):127-46. https://doi.org/10.5209/reve.95352
  84. 84. Bisht B. Yield prediction using spatial and temporal deep learning algorithms and data fusion. Computer Science, PhD [thesis]. Ottawa (ON): University of Ottawa; 2023. https://doi.org/10.1109/ICMLA58977.2023.00272
  85. 85. Saleh E. Trade-marking tradition: an ethnographic study of the Lebanese wine industry. PhD [thesis]. London: Goldsmiths University of London; 2014. https://doi.org/10.25602/GOLD.00011042
  86. 86. Babashahi L, Barbosa CE, Lima Y, Lyra A, Salazar H, Argôlo M, et al. AI in the workplace: a systematic review of skill transformation in the industry. Administrative Sciences. 2024;14(6):127. https://doi.org/10.3390/admsci14060127
  87. 87. Simeunović M, Ratković K, Kovač N, Racković T, Fernandes A. A knowledge-driven framework for a decision support platform in sustainable viticulture: integrating climate data and supporting stakeholder collaboration. Sustainability. 2025;17(4):1387. https://doi.org/10.3390/su17041387
  88. 88. Izquierdo-Bueno I, Moraga J, Cantoral JM, Carbú M, Garrido C, González-Rodríguez VE. Smart viniculture: applying artificial intelligence for improved winemaking and risk management. Applied Sciences. 2024;14(22):10277. https://doi.org/10.3390/app142210277
  89. 89. Fuentes S, Tongson E, Gonzalez Viejo C. New developments and opportunities for AI in viticulture, pomology and soft-fruit research: a mini-review and invitation to contribute articles. Frontiers in Horticulture. 2023;2:1282615. https://doi.org/10.3389/fhort.2023.1282615
  90. 90. Newlands NK. Artificial intelligence and big data analytics in vineyards: a review. IntechOpen; 2021. https://doi.org/10.5772/intechopen.99862
  91. 91. Madeira M, Porfírio RP, Santos PA, Madeira RN. AI-powered solution for plant disease detection in viticulture. Procedia Computer Science. 2024;238:468-75. https://doi.org/10.1016/j.procs.2024.06.049
  92. 92. Sharma S, Popli R, Singh S, Chhabra G, Saini GS, Singh M, et al. The role of 6G technologies in advancing smart city applications: opportunities and challenges. Sustainability. 2024;16(16):7039. https://doi.org/10.3390/su16167039
  93. 93. Lozano-Tello A, Luceño J, Caballero-Mancera A, Clemente PJ. Estimating olive tree density in delimited areas using Sentinel-2 images. Remote Sensing. 2025;17(3):508. https://doi.org/10.3390/rs17030508
  94. 94. Toscano F, Fiorentino C, Capece N, Erra U, Travascia D, Scopa A, et al. Unmanned aerial vehicle for precision agriculture: a review. IEEE Access; 2024. https://doi.org/10.1109/ACCESS.2024.3401018
  95. 95. Ibáñez-Jiménez J, Palomo R. Wine tokenisation: the opportunity of DLT technology for the economic and social challenges of the wine sector. REVESCO Rev Estud Coop. 2024;146:14. https://doi.org/10.5209/reve.95352
  96. 96. Vitiello M. Globalism and sustainable vineyard practices. U Pac L Rev. 2020;52:623.

Downloads

Download data is not yet available.