Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Embryonic toxicology evaluation of citrus fruit (Citrus reticulata and Citrus limonum) peel mediated hydroxyapatite nanocomposite

DOI
https://doi.org/10.14719/pst.9717
Submitted
30 May 2025
Published
24-12-2025

Abstract

Nanotechnology is a rapidly evolving scientific field due to advantages such as improved bioavailability, enhanced bioactivity and targeted drug delivery. However, concerns exist regarding its potential toxicity, as nanoparticles can enter the biological systems and induce inflammatory responses, oxidative stress, neurotoxicity and genotoxicity. These risks necessitate comprehensive toxicological evaluations to ensure their safe biomedical use. Green synthesis, particularly using citrus fruit peels, presents an eco-friendly alternative for nanoparticle production by leveraging bioactive compounds to reduce toxicity. This study aimed to assess the embryonic toxicity of citrus fruit (Citrus reticulata and C. limonum) peel-mediated hydroxyapatite nanocomposites, providing insights into their safety and guiding future research toward sustainable nanotechnology applications. Green synthesis of C. reticulata and C. limonum-mediated hydroxy apatite nanocomposites was successfully carried out. The toxicity of developed nanocomposite was assessed using embryonic toxicology evaluation in zebrafish. Stereo microscopic analysis was done for the assessment of morphologic features, developmental stages and potential malformation of zebrafish embryos. At a 24 hr interval, hatching rate and embryonic viability rates were measured. Sublethal toxicity was observed in the zebrafish embryonic toxicology evaluation, with a dose-dependent hatching rate and embryonic viability. Overall, C. reticulata and C. limonum-mediated hydroxyapatite nanocomposites exhibited very low toxicity based on zebrafish embryonic toxicology evaluations.

References

  1. 1. Ajithan SL, Ganapathy D, Shanmugam R, Dathan PC. Role of nanoparticles and nanocomposites in bone regeneration. Trends Biomater Artif Organs. 2024;38(3):195-205.
  2. 2. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization and applications: a comprehensive review for biologists. J Nanobiotech. 2022;20(1):262. https://doi.org/10.1186/s12951-022-01477-8
  3. 3. Wan D, Chen HL, Lin YS, Chuang SY, Shieh J, Chen SH. Using spectroscopic ellipsometry to characterize and apply the optical constants of hollow gold nanoparticles. ACS Nano. 2009;3(6):960-70. https://doi.org/10.1021/nn8009008
  4. 4. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011
  5. 5. Roy R, Kumar S, Tripathi A, Das M, Dwivedi PD. Interactive threats of nanoparticles to the biological system. Immunol Lett. 2014;158(1-2):79-87. https://doi.org/10.1016/j.imlet.2013.11.019
  6. 6. Cruz GGDL, Rodríguez-Fragoso P, Reyes-Esparza J, Rodríguez-López A, Gómez-Cansino R, Rodriguez-Fragoso L. Interaction of nanoparticles with blood components and associated pathophysiological effects. In: Gomes AC, Sarria MP, editors. Unraveling the safety profile of nanoscale particles and materials - from biomedical to environmental applications; 2018. p. 1-25 https://doi.org/10.5772/intechopen.69386
  7. 7. Montiel-Dávalos A, Ventura-Gallegos JL, Alfaro-Moreno E, Soria-Castro E, García-Latorre E, Cabañas-Moreno JG, et al. TiO2 nanoparticles induce dysfunction and activation of human endothelial cells. Chem Res Toxicol. 2012;25(4):920-30. https://doi.org/10.1021/tx200551u
  8. 8. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of nanoparticles on brain health: an up to date overview. J Clin Med. 2018;7(12):490. https://doi.org/10.3390/jcm7120490
  9. 9. Nho R. Pathological effects of nano-sized particles on the respiratory system. Nanomedicine. 2020;29:102242. https://doi.org/10.1016/j.nano.2020.102242
  10. 10. Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, et al. Genotoxicity of nanomaterials: advanced in vitro models and high throughput methods for human hazard assessment. Nanomaterials (Basel). 2020;10(10):1911. https://doi.org/10.3390/nano10101911
  11. 11. Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1-11.
  12. 12. Savage DT, Hilt JZ, Dziubla TD. In vitro methods for assessing nanoparticle toxicity. Methods Mol Biol. 2019;1894:1-29. https://doi.org/10.1007/978-1-4939-8916-4_1
  13. 13. Achenbach JC, Leggiadro C, Sperker SA, Woodland C, Ellis LD. Comparison of the zebrafish embryo toxicity assay and the general and behavioral embryo toxicity assay as new approach methods for chemical screening. Toxics. 2020;8(4):126. https://doi.org/10.3390/toxics8040126
  14. 14. Stapleton PA. Gestational nanomaterial exposures: microvascular implications during pregnancy, fetal development and adulthood. J Physiol. 2016;594(8):2161-73. https://doi.org/10.1113/JP270581
  15. 15. Chahardehi AM, Arsad H, Lim V. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants (Basel). 2020;9(10):1345. https://doi.org/10.3390/plants9101345
  16. 16. Saini R, Ranjit A, Sharma K, Prasad P, Shang X, Gowda KG, et al. Bioactive compounds of citrus fruits: a review of composition and health benefits of carotenoids, flavonoids, limonoids and terpenes. Antioxidants. 2022;11(2):239. https://doi.org/10.3390/antiox11020239
  17. 17. Kazemi S, Hosseingholian A, Gohari SD, Feirahi F, Moammeri F, Mesbahian G, et al. Recent advances in green synthesized nanoparticles: from production to application. Mater Today Sustain. 2023;24:100500. https://doi.org/10.1016/j.mtsust.2023.100500
  18. 18. Lakshmi AS, Dhanraj MG, Rajeshkumar S. In vitro anti-inflammatory activity and cytotoxic effect of Citrus reticulata and Citrus limonum incorporated hydroxyapatite nanoparticles. Plant Sci Today. 2025;12(1):1-8. https://doi.org/10.14719/pst.3697
  19. 19. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-50. https://doi.org/10.1039/c1gc15386b
  20. 20. Kim KT, Tanguay RL. The role of chorion on toxicity of silver nanoparticles in the embryonic zebrafish assay. Environ Health Toxicol. 2014;29:e2014021. https://doi.org/10.5620/eht.e2014021
  21. 21. Wang Y, Han Y, Xu DX. Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. Environ Sci Ecotechnol. 2024;19:100325. https://doi.org/10.1016/j.ese.2023.100325
  22. 22. Vecchio G, Galeone A, Brunetti V, Maiorano G, Rizzello L, Sabella S, et al. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine (Lond). 2012;8(1):1-7. https://doi.org/10.1016/j.nano.2011.11.001
  23. 23. Chen ZY, Li NJ, Cheng FY, Hsueh JF, Huang CC, Lu FI, et al. Effect of the chorion on size-dependent acute toxicity and underlying mechanisms of amine-modified silver nanoparticles in zebrafish embryos. Int J Mol Sci. 2020;21(8):2864. https://doi.org/10.3390/ijms21082864
  24. 24. Xia G, Liu T, Wang Z, Hou Y, Dong L, Zhu J, et al. Effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artif Cells Nanomed Biotechnol. 2016;44(4):1116-21.
  25. 25. Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, et al. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res. 2010;12:1645-54. https://doi.org/10.1007/s11051-009-9740-9
  26. 26. Santhosh K, Kamala K, Ramasamy P, Musthafa MS, Almujri SS, Asdaq SMBA, et al. Unveiling the silent threat: heavy metal toxicity devastating impact on aquatic organisms and DNA damage. Mar Pollut Bull. 2024;200:116139. https://doi.org/10.1016/j.marpolbul.2024.116139
  27. 27. Kolosnjaj-Tabi J, Just J, Hartman KB, Laoudi Y, Boudjemaa S, Alloyeau D, et al. Anthropogenic carbon nanotubes found in the airways of Parisian children. EBioMedicine. 2015;2(11):1697-704. https://doi.org/10.1016/j.ebiom.2015.10.012
  28. 28. Zhang W, Song D, Wang Y, Zhu Z. Evaluation of embryotoxicity of baicalin based on embryonic stem cell test system. Chin J Pharmacol Toxicol. 2012;26(6):864-9.
  29. 29. Tolentino J, Undan JR. Embryo-toxicity and teratogenicity of Derris elliptica leaf extract on zebrafish (Danio rerio) embryos. Int J Pure Appl Biosci. 2016;4:16-20. https://doi.org/10.18782/2320-7051.2293
  30. 30. Jayasinghe CD, Jayawardena UA. Toxicity assessment of herbal medicine using zebrafish embryos: a systematic review. Evid Based Complement Alternat Med. 2019;2019:7272808.https://doi.org/10.1155/2019/7272808
  31. 31. Fatima M, Aqib AI, Faraz H, Talib N, Muneer A, Rab SO, et al. Neutering pathogens through green synthesized nanoparticles. Microb Pathog. 2025;107495. https://doi.org/10.1016/j.micpath.2025.107495
  32. 32. Sabu A, Sundar S, Shanmugam RK, Ramadoss R, Paneerselvem S, Ramani P. Evaluation of cytotoxicity and embryonic toxicology of tamarind seed and chitosan mediated silver nanobio composite. J Pharm Negat Results. 2023;13(Suppl 9):1-8.
  33. 33. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small. 2009;5(16):1897-910. https://doi.org/10.1002/smll.200801716
  34. 34. Cao J, Wu Q, Liu X, Zhu X, Huang C, Wang X, et al. Mechanistic insight on nanomaterial-induced reactive oxygen species formation. J Environ Sci. 2025;151:200-10. https://doi.org/10.1016/j.jes.2024.03.009

Downloads

Download data is not yet available.