Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Identification of promising muskmelon parents and hybrids through combining ability and heterosis analysis in arid environments

DOI
https://doi.org/10.14719/pst.9721
Submitted
30 May 2025
Published
22-10-2025 — Updated on 30-10-2025
Versions

Abstract

Despite the economic importance of muskmelon, there is limited information on the combining ability and heterotic potential of genetically diverse cultivars, highlighting the need for systematic evaluation of parental lines and hybrid combinations. Seven genetically diverse cultivars, including two inbred lines of muskmelon (Cucumis melo L.) were crossed in a half-diallel to generate 21 F1 hybrids. These hybrids, along with the seven parental lines and commercial check, were evaluated in a randomized block design during summer-2024 at research farm, College of Agriculture, Swami Keshwanand Rajasthan Agriculture University, Bikaner, Rajasthan, India. The mean performance of parents revealed a wide range of variability for various characters within the parental line utilized in crossing programme. General combining ability (GCA) analysis indicated that the parents Thar Mahima, AHMM/BR-8, Punjab Sunehri, Hara Madhu and Durgapura Madhu exhibited the best GCA for yield and related traits. Specific combining ability (SCA) variance was greater than the GCA variance for all traits except some yield-contributing characters. Among the crosses AHMM/BR-8 × Punjab Sunehri, Thar Mahima × Durgapura Madhu, Thar Mahima × Hara Madhu and Durgapura Madhu × Hara Madhu showed superior SCA effects for yield and associates traits. Additionally, AHMM/BR-8 × Punjab Sunehri, Thar Mahima × Durgapura Madhu and Thar Mahima × Hara Madhu exhibited significant positive heterosis, making them promising candidates for future hybrid development in muskmelon.

References

  1. 1. Saroj PL, Ram C, Kumar K. Arid horticultural crops: Status and opportunities under changing climatic conditions. Indian J Plant Genet Resour. 2020;33(1):17–31.
  2. 2. Fergany M, Kaur B, Monforte AJ, Pitrat M, Rys C, Lecoq H, et al. Variation in muskmelon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet Resour Crop Evol. 2011;58:225–43.
  3. 3. Gonzalo MJ, Díaz A, Dhillon NPS, Reddy UK, Pico B, Monforte AJ. Re-evaluation of the role of Indian germplasm as centre of muskmelon diversification based on genotyping-by-sequencing analysis. BMC Genomics. 2019;20:1–13. https://doi.org/10.1186/s12864-019-5636-2
  4. 4. Singh M, Sharma SP, Sarao NK, Kaur S, Chhuneja P. Molecular mapping of nuclear male-sterility gene ms-1 in muskmelon (Cucumis melo L.). J Hortic Sci Biotechnol. 2020;95:162–68. https://doi.org/10.1080/14620316.2019.1690892
  5. 5. Pandey S, Rai M, Prasanna HC, Kalloo G. “Kashi Madhu”: A new muskmelon cultivar with high total soluble solids. HortScience. 2008;43:245–46.
  6. 6. Rehman A, Dang T, Qamar S, Ilyas A, Fatema R. Revisiting plant heterosis—from field scale to molecules. Genes. 2021;12:1688. https://doi.org/10.3390/genes12111688
  7. 7. Choudhary BR, Dhaka RS, Fageria MS. Heterosis for yield and yield related attributes in muskmelon (Cucumis melo L.). Indian J Genet. 2003;63:91–92.
  8. 8. Kamer A, Yousry M. Heterosis and heritability studies for fruit characters and yield in muskmelon (Cucumis melo L.). Middle East J Appl Sci. 2015;5:262–73.
  9. 9. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Austr J Biol Sci. 1956;9:463.
  10. 10. Valerio IP, Iraja F, De Carvalho F, De Oliveira AC, De Souza VQ. Combining ability of wheat genotypes in two models of diallel analyses. Crop Breed Appl Biotechnol. 2009;9:100–107. https://doi.org/10.12702/1984-7033.v09n01a15
  11. 11. De Araújo Barros AK, de Sousa Nunes GH, de Queiróz MA, Pereira EWL, Costa Filho JH. Diallel analysis of yield and quality traits of muskmelon fruits. Crop Breed Appl Biotechnol. 2011;11:313–19. https://doi.org/10.1590/S1984-70332011000400006
  12. 12. Costa IJN, de Normandes Valadares R, Nóbrega DA, Mendes AQ, Silva FS, Menezes D. Heterosis and combining ability of muskmelon genotypes of momordica group. J Exp Agric Int. 2019;30:1–9. https://doi.org/10.9734/jeai/2019/v30i330120
  13. 13. Choudhary BR, Haldhar SM, Maheshwari SK, Bhargava R, Sharma SK. AHMM/BR-8 (IC0599709; INGR 14043), a muskmelon (Cucumis melo L.) germplasm with monoecious sex form. Indian J Plant Genet Resour. 2015;28(3):357–58.
  14. 14. Choudhary BR, Singh D, Saroj PL. Development and characterization of intraspecific hybrids derived from Cucumis melo L. Bangladesh J Bot. 2019;48(2):359–66.
  15. 15. Bhowmick BC, Dutta SK, Puzari NN, Goswami J, Saud RK, Ray BK. Package of practices for horticultural crops, fisheries and home science. Department of Agriculture, Assam. 2015; p. 81.
  16. 16. Choudhary BR, Maheshwari SK, Haldhar SM, Ram C, Singh D. Thar Mahima: An improved cultivar of muskmelon identified for arid region. Indian Journal of Arid Horticulture. 2024;3(1&2)L13-17. https://doi.org/10.48165/ijah.2021.3.1.3
  17. 17. Yogesh M, Vidya, Kavya DO, Kishorkumar GK, Pramod BS. Advances in production technology of muskmelon. In: Yadav A, Rajbhar R, Kumar R, Prasad L, Luthra CNRS, editors. Advances in vegetable production. PK Publishers and Distributors, New Delhi; 2023. p. 112.
  18. 18. Kaur A, Sharma M, Manan J, Bindu. Comparative performance of muskmelon (Cucumis melo) hybrids at farmers’ field in district kapurthala. J Krishi Vigyan. 2017;6(1):24-31. https://doi.org/10.5958/2349-4433.2017.00043.5
  19. 19. Ranganna S. Manual of analysis of fruit and vegetable products. New York: McGraw-Hill; 1977.
  20. 20. Heinze PH, Kanapaux MS, Wade BL, Grimball PC, Foster RLAAC. Ascorbic acid contents of 39 varieties of snap bean. Food Res. 1944;9:19–26.
  21. 21. Tomar RS, Bhalala MK. Heterosis studies in muskmelon (Cucumis melo L.). J Hortic Sci. 2006;1:144–47.
  22. 22. Singh V, Vashisht VK. Heterosis and combining ability for yield in muskmelon (Cucumis melo L.). Int J Curr Microbiol Appl Sci. 2018;7:2996–3006. https://doi.org/10.20546/ijcmas.2018.708.319
  23. 23. Feyzian E, Dehghani H, Rezai AM, Javaran MJ. Diallel cross analysis for maturity and yield-related traits in muskmelon (Cucumis melo L.). Euphytica. 2009;168:215–23. https://doi.org/10.1007/s10681-009-9938-0
  24. 24. Kumar P, Singh H, Lal C, Sharma SR. Combining ability analysis in bread wheat (Triticum aestivum) over environments. Indian J Agric Sci. 2020;90(6):1093–96. https://doi.org/10.56093/ijas.v90i6.104773
  25. 25. Kumar P, Singh H, Choudhary R, Lal C. Heterosis analysis for yield and its component traits in bread wheat (Triticum aestivum L.) over different environment. J Environ Biol. 2021;42(2):438–44. http://dx.doi.org/10.22438/jeb/42/2(SI)/SI-251
  26. 26. Lal C, Shekhawat AS, Singh J, Rajput SS, Sharma SR, Kumar P. Heterosis studies in 6-rowed barley (Hordeum vulgare) under different sowing condition. Indian J Agric Sci. 2020;90(7):1306–309. https://doi.org/10.56093/ijas.v90i7.105600
  27. 27. Lal C, Shekhawat AS, Singh J, Kumar P. Combining ability analysis in six-rowed barley under different date of sowing conditions. Ann Agric Sci. 2021;42(4):1–6.
  28. 28. Barupal HL, Sharma AK, Shekhawat HS, Kumar P, Kumar M. Heterosis studies in Indian mustard (Brassica juncea). Int J Agric Innov Res. 2017;5:960–66.
  29. 29. Saha K, Mishra S, Choudhary H, Mahapatra S. Estimates of genetic component of variation in muskmelon (Cucumis melo L.). Int J Curr Microbiol Appl Sci. 2018;7:1144–51.
  30. 30. Badami K, Daryono BS, Amzeri A, Khoiri S. Combining ability and heterotic studies on hybrid muskmelon (Cucumis melo L.) populations for fruit yield and quality traits. SABRAO J Breed Genet. 2020;52:402–17.
  31. 31. Mohammadi R, Dehghani H, Karimzadeh G. Genetic analysis of yield components, early maturity and total soluble solids in cantaloupe (Cucumis melo L. subsp. melo var. cantalupensis Naudin). Yuzuncu Yil Univ Tarim Bilim. 2014;24(1):79–86. https://doi.org/10.29133/yyutbd.235919
  32. 32. Rolania S, Fageria MS. Heterosis and combining ability evaluation for yield, quality, and fruit fly resistance in muskmelon. Int J Curr Microbiol Appl Sci. 2018;7:902–15.
  33. 33. Pouyesh A, Lotfi M, Ramshini H, Karami E, Shamsitabar A, Armiyoun E. Genetic analysis of yield and fruit traits in cantaloupe cultivars. Plant Breeding. 2017;136:569–77.
  34. 34. Kaur S, Sharma SP, Sarao NK, Deol JK, Gill R, Abd-Elsalam KA, et al. Heterosis and combining ability for fruit yield, sweetness, β-carotene, ascorbic acid, firmness and Fusarium wilt resistance in muskmelon (Cucumis melo L.) involving genetic male sterile lines. Horticulturae. 2022;8:82. https://doi.org/10.3390/horticulturae8010082
  35. 35. Gomes DA, Alves IM, Maciel GM, Siquieroli ACS, Peixoto JVM, Pires PS, et al. Genetic dissimilarity, selection index and correlation estimation in a muskmelon germplasm. Horticultura Brasileira. 2021;39:46–51.
  36. 36. Adewumi AS, Asare PA, Adejumobi II, Adu MO, Taah KJ, Adewale S, et al. Multi-trait selection index for superior agronomic and tuber quality traits in bush yam (Dioscorea praehensilis Benth.). Agronomy. 2023;13:682.

Downloads

Download data is not yet available.