Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Interaction of phytohormones with the antioxidant and pro-oxidant systems of cotton under salt stress

DOI
https://doi.org/10.14719/pst.9722
Submitted
30 May 2025
Published
04-12-2025

Abstract

Despite extensive studies on the physiological effects of salinity in cotton, the combined regulatory roles of phytohormones in modulating the plant antioxidant and pro-oxidant systems under salt stress remain poorly understood. The biochemical responses of cotton plant varieties with different salt tolerances were studied through the exogenous application of phytohormones. The study used cotton plants of Gossypium hirsutum L. species developed by classical cotton breeding (Gulistan and C-4727), two gene knockout cultivars (Porlok-1 and Porlok-4) and two cultivars developed through DNA marker-assisted introgression into local varities (Ravnak-1 and Ravnak-2). Based on the results obtained, the exogenous application of abscisic acid (ABA) was found to alleviate the negative effects of salinity in all varieties. Under laboratory conditions, in saline models with 1 % and 4 % NaCl (sodium chloride), significant biochemical indicators including antioxidant enzyme activities, as well as concentrations of endogenous ABA and proline were observed to increase respectively in Porlok-1, Porlok-4 and Gulistan cotton cultivars. The biochemical resistance of gene knockout cotton varieties such as Porlock varieties to abiotic
stresses has been confirmed by molecular studies. When these varieties were compared with unmodified cotton varieties, the modified lines exhibited higher antioxidant enzyme activity and greater synthesis of free proline, reducing sugars and phytohormones, indicating enhanced stress adaptation.

References

  1. 1. Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants' response mechanisms to salinity stress. Plants. 2023;12:2253. https://doi.org/10.3390/plants12122253
  2. 2. Vinay K, Shabir HW, Penna S, Lam-Son PT. Salinity responses and adaptive mechanisms in halophytes and their exploitation for producing salinity tolerant crops. In V Kumar et al., editors. Salinity responses and tolerance in plants: exploring RNAi, genome editing and systems biology, Switzerland: Springer Nature; 2018. p. 1-20. https://doi.org/10.1007/978-3-319-90318-7_1
  3. 3. Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One. 2014;9:e112807. https://doi.org/10.1371/journal.pone.0112807
  4. 4. Peng J, Liu J, Zhang L, Luo J, Dong H, Ma Y, et al. Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS One. 2016;11:e0156241. https://doi.org/10.1371/journal.pone.0156241
  5. 5. Szypulska E, Jankowski K, Weidner S. ABA pretreatment can limit salinity-induced proteome changes in growing barley sprouts. Acta Physiol Plant. 2017;39:190. https://doi.org/10.1007/s11738-017-2490-x
  6. 6. Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, et al. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 2015;75:391-404. https://doi.org/10.1007/s10725-014-0013-y
  7. 7. Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62:4731-48. https://doi.org/10.1093/jxb/err210
  8. 8. Jiang, M, Zhang, J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves. J. Exp Bot. 2002;53:2401-10. https://doi.org/10.1093/jxb/erf090
  9. 9. Agarwal S, Sairam RK, Srivastava GC, Meena RC. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant. 2005;49:541-50. https://doi.org/10.1007/s10535-005-0048-z
  10. 10. Bhardwaj RD, Singh N, Sharma A, Joshi R, Srivastava P. Hydrogen peroxide regulates antioxidant responses and redox related proteins in drought stressed wheat seedlings. Physiol Mol Biol Plants. 2021;27:151-63. https://doi.org/10.1007/s12298-021-00937-z
  11. 11. Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shi, DH, Lee IJ. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agr Food Chem. 2010;58:7226-32. https://doi.org/10.1021/jf101221t
  12. 12. Babaeva DT, Esanov RS, Akhunov AA, Gafurov MB, Khashimova NR, Matchanov AD. Biological activity of the supramolecular complex of glycyrrhizic and salicylic acids. Chem Nat Compd. 2020;56:278-81. https://doi.org/10.1007/s10600-020-03006-1
  13. 13. Moran J, Becana M, Iturbe OI, Frechilla S, Klucas R, Aparicio TP. Drought induces oxidative stress in pea plants. Planta. 1994;194:346-52. https://doi.org/10.1007/BF00197534
  14. 14. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867-80. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  15. 15. Giannopolitis CN, Ries SK. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977;59:309-14. https://doi.org/10.1104/pp.59.2.309
  16. 16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem.1951;193:265-75. https://doi.org/10.1016/S0021-9258(19)52451-6
  17. 17. BNO Team. Nelson Somogyi method for determination of reducing sugars. Biology Notes Online (blog). May 3, 2024. https://biologynotesonline.com/nelson-somogyi-method-fordetermination-of-reducing-sugars/
  18. 18. Gür A, Demirel U, Ozden M, Kahrama A, Çopur O. Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). Afr J Biotechnol. 2010;9:1008-15.
  19. 19. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205-7. https://doi.org/10.1007/BF00018060
  20. 20. Shihalyeyeva GN, Budnyak AK, Shihalyeyev II, Ivaschenko OL. A modified method for determination of proline in plants. JVN Karazin Kharkiv Nat Univ Series: Biology. 2014;21:168-72.
  21. 21. Kuldoshova KM, Akhunov AA, Khashimova NR, Ziyavitdinov JF. Effects of exogenous abscisic acid on antioxidant system of salt tolerant and salt sensitive cotton cultivars. Hell Plant Prot J. 2023;16:40-9. https://doi.org/10.2478/hppj-2023-0006
  22. 22. Akhmedov DKh, Jabborov JS, Mannopov RS. IOP Conf. Ser.: earth environmental science 1068 012027. IOP Publishing; 2022. https://doi.org/10.1088/1755-1315/1068/1/012027
  23. 23. Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun. 2014;5:3062. https://doi.org/10.1038/ncomms4062
  24. 24. Normamatov IS, Makamov AKh., Boykobilov UA, Achilov SG, Khusenov NN, Norbekov JK, et al. Morpho-biological traits of upland cotton at the germination stage under optimal and salinity soil conditions. Asian J Plant Sci. 2023;22:165-72. https://doi.org/10.3923/ajps.2023.165.172
  25. 25. Darmanov MM, Makamov AK, Ayubov MS, Khusenov NN, Buriev ZT, Shermatov SE, et al. Development of superior fibre quality upland cotton cultivar series ‘Ravnaq’ using marker-assisted selection. Front Plant Sci. 2022;13:1-14. https://doi.org/10.3389/fpls.2022.906472
  26. 26. Li XJ, Yang MF, Chen H. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochem Bioph Acta. 2010;1804:929-40. https://doi.org/10.1016/j.bbapap.2010.01.004
  27. 27. Repkina NS, Ignatenko AA, Talanova VV. Effect of exogenous salicylic acid on the superoxide dismutase activity in cucumber seedlings (Cucumis sativus L.) under chilling. J Sib Fed Univ Biol. 2024;17:177-89.
  28. 28. Alhdad GM, Flowers TJ. Salt tolerance in the halophyte Suaeda maritima L. Dum.-the effect of oxygen supply and culture medium on growth. J Soil Sci Plant Nutr. 2021;21:578-86. https://doi.org/10.1007/s42729-020-00384-x
  29. 29. Heuer B. Role of proline in plant response to drought and salinity. In: Pessarakli M, editor. Handbook of plant and crop stress, 3rd ed. Boca Raton, FL, USA: CRC Press; 2016. p. 213–38.
  30. 30. Rafiq L, Nowsheen H, Baiza B, Gulab KR, Nazir AM. Role of growth elicitors and microbes in stress management and sustainable production of Sorghum. Plant Stress. 2023;9. https://doi.org/10.1016/j.stress.2023.100179
  31. 31. Kumar A, Partap M, Warghat AR. Jasmonic acid: a versatile phytohormone regulating growth, physiology and biochemical responses. J Plant Growth Regul. 2025;44:131-54. https://doi.org/10.1007/s00344-024-11376-x
  32. 32. Shi Y, Yang S. ABA regulation of the cold stress response in plants. In: Zhang DP, editors. Abscisic acid: metabolism, transport and signaling. Dordrecht: Springer; 2014. https://doi.org/10.1007/978-94-017-9424-4_17
  33. 33. Rasool S, Ahmad A, Siddiqi TO, Ahmad P. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 2012;4:1039-50. https://doi.org/10.1007/s11738-012-1142-4
  34. 34. Zhang L, Zhang G, Wang Y, Zhou Z, Meng Y, Chen B. Effect of soil salinity on physiological characteristics of functional leaves of cotton plants. J Plant Res. 2013;126:293-304. https://doi.org/10.1007/s10265-012-0533-3
  35. 35. Srivastava SA, Lokhande VH, D’Souza SF, Suprasanna P. Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Front Environ Sci. 2015;3:1-9. https://doi.org/10.3389/fenvs.2015.00019
  36. 36. AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci. 2016;7:276. https://doi.org/10.3389/fpls.2016.00276
  37. 37. Najafi F, Khavari RA, Rastgar JF, Sticklen M. Physiological changes in pea (Pisum sativum L. cv, green arrow) under NaCl salinity. PJBS. 2006;9:974-8. https://doi.org/10.3923/pjbs.2006.974.978
  38. 38. Rais L, Masood A, Inam A, Khan N. Sulfur and nitrogen coordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salt stress. J Plant Biochem Physiol. 2013;1:1-6. https://doi.org/10.4172/2329-9029.1000101
  39. 39. Ashfaque F, Iqbal M, Khan R, Nafees AK. Exogenously applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum Aestivum L.) under salt stress. Annu Res Rev Biol. 2013;4:105-20. https://doi.org/10.9734/ARRB/2014/5629
  40. 40. Mansour M. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant. 2000;43:491-500. https://doi.org/10.1023/A:1002873531707
  41. 41. Gharsallah C, Fakhfakh H, Grubb D, Gorsane F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. 2016;8:plw055. https://doi.org/10.1093/aobpla/plw055
  42. 42. Javed S, Bukhari ShA, Ashraf MY, Mahmood S, Iftikhar T. Effect of salinity on growth, biochemical parameters and fatty acid composition in safflower (Carthamus tinctorius L.). Pak J Bot. 2014;46:1153-8.

Downloads

Download data is not yet available.