Research Articles
Vol. 12 No. 3 (2025)
Unravelling the fruit quality, bioactive potential and genetic insights of Indian coffee plum [Flacourtia jangomas (Lour.)Raeusch.] plants under Terai natural vegetation of West Bengal
Department of Horticulture and Postharvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan 731 236, India
Department of Horticulture and Postharvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan 731 236, India
Department of Horticulture and Postharvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan 731 236, India
Department of Horticulture and Postharvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan 731 236, India
Department of Pomology and Postharvest Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736 165, India
Department of Horticulture and Postharvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan 731 236, India
Department of Horticulture and Postharvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan 731 236, India
Abstract
The present study aimed to unveil the morpho-biochemical characters of fruits, the presence of bioactive compounds and genetic diversity of different Indian coffee plum plants selected from the natural vegetation of the Terai region of West Bengal during the years 2022-23 and 2023-24. A wide array of variationin fruit morphology and quality aspects concerning fruit length (14.7 to 22.4 cm), fruit diameter (17.1 to 23.7 cm), fruit weight (4.37 to 7.82 g), number of seeds (5.8 to 11.1), TSS (6.2 to 10.9ºBrix), acidity (0.40 to 0.52 %), reducing sugar (4.02 to 5.80 %) and ascorbic acid content (100.5 to 156.7 mg/100g)wasnoticed. Fruits of selected plants also possessed comprehensive variation in antioxidants (63.9 to 88.7 % of DPPH inhibition), total phenols (145.7 to 278.6 µgGAE/g), flavonoids (85.1 to 163.9 mgQE/g), anthocyanin content (33.5 to 56.4 µg/100g) and carotenoid content (1.135 to 1.6114 mg/100 g). A positive correlation was noted among fruit size, quality parameters such as TSS, acidity and ascorbic acid content.Ascorbic acid content was foundto be positively correlated with fruit size, total sugar, antioxidant activity, phenol, flavonoid and carotenoids. A remarkable negative correlation was also noted between the number of fruits per cluster and the number of seeds per fruit, with other parameters. The entire population of Indian coffee plumplantsrepresented three major clusters, comprising 8, 3 and 9 different plants, based on three different parameter clusters, to create such variation. ICPG-J5 is ideal for the commercial fresh fruit market due to its large,heavier fruit and excellent biochemical properties, ascorbic acidand strong antioxidant activity. ICPG-J7 stands out for processing purposes, as it has the largest fruit size, highest weight and a balanced sweet-tangy profile. ICPG-J2 is the best choice for functional food applications, rich in flavonoids, anthocyanins and strong antioxidant properties, making it valuable for health-focused products.
References
- 1. Nguyen DT, Vo TXT, Tran NK. Determination of the content of major chemical components and antioxidant ability of Flacourtia jangomas fruits. Plant Sci Today. 2023;10(4):39–43.
- 2. Pai A, Shenoy KC. Toxicity and safety profiling of Flacourtia jangomas (Lour.) Raeusch fruit and leaf methanolic extract in Sprague Dawley rats. J Appl Bio Biotech. 2024;12(1):258–64. https://doi.org/10.7324/JABB.2024.152315
- 3. Dubey N, Pandey V, Tewari S. Antioxidant potential and phytochemical composition of unripe fruits of Flacourtia jangomas. Med Plants. 2023;5(3):164–7.
- 4. Priyadarshini S, Mehta R, Acharya B. A review on underutilized fruit plants of Eastern India. Ind J Hort Sci. 2022;11(1):77–82.
- 5. Mishra T, Rai A. A critical review of Flacourtia jangomas (Lour) Raeusch: A rare fruit tree of Gorakhpur division. EJBPS. 2020;7:333-338. Prasad R, Sinha N, Verma M. Ethnobotanical uses and pharmacological significance of thorny fruit species. Ethnomed Res. 2022;4(2):88–96.
- 6. Bhowmick S. Some lesser-known minor fruit crops of northern parts of West Bengal. ResearchGate. 2024. https://www.researchgate.net/publication/284242935
- 7. Sharma A, Patel S, Mondal A. Sugar metabolism and fruit development in Flacourtia montana: Genetic and environmental influences. Plant Mol Biol Rep. 2021;28(2):99–113. https://doi.org/10.1016/j.pmbr.2021.05.008
- 8. Dutta B, Borah N. Studies on nutraceutical properties of Flacourtia jangomas fruits in Assam, India. J Med Plants. 2023;5(2):50–3.
- 9. Singh R, Patel S. Functional properties and utilization of minor fruits: A review. Int J Food Nutri Sci. 2020;9(2):45–51.
- 10. Tiwari K, Rajak RC, Senapati S. Antioxidant activity of selected indigenous fruits: A case study on wild edibles. J Med Plants Herbal Ther Res. 2021;9:112–20.
- 11. Sahoo A, Kar D. Folk medicinal plants and their phyto pharmacological potential in Northeast India. J Trad Med. 2022;6(3):144–50.
- 12. Pai A, Shenoy KC. Physicochemical and phytochemical analysis of methanolic extract of leaves and fruits of Flacourtia jangomas (Lour.) Raeusch. Int J Pharm Sci Res. 2021;12(3):1671–8. https://doi.org/10.13040/IJPSR.0975-8232.12(3).1671-78
- 13. Yadav M, Kumar S, Mishra R. Antioxidant and antimicrobial activities of Flacourtia jangomas: A comprehensive review. Asian J Pharma Res Dev. 2023;11(1):22–9.
- 14. Sharma P, Choudhury R, Sen A. Medicinal value of indigenous fruit plants in Himalayan Terai. Ind J For Res. 2021;5(4):198–205.
- 15. Kumar R, Singh A, Yadav S. Phytochemical screening and medicinal properties of underutilized fruit species. Ind J Nat Prod. 2021;37(1):112–7.
- 16. Dutta B, Borah N. Studies on nutraceutical properties of Flacourtia jangomas fruits in Assam, India. J Med Plants Stud. 2017;5(1):50–3.
- 17. Sharma N, Ghosh T, Das R. Biochemical profiling of Flacourtia jangomas accessions: Implications for breeding and functional food development. Ind J Hort Sci. 2022;41(3):156–70. https://doi.org/10.1016/j.ijhs.2022.08.005
- 18. AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. Vol I. 15th ed. Helrich K, editor. Virginia: AOAC; 1990. p. 83.
- 19. Ranganna S. Handbook of Analysis and Quality Control of Fruit and Vegetable Products. 2nd ed. New York: Tata McGraw-Hill Education; 1986.
- 20. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Tech. 1995;28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
- 21. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem. 2002;50(10):3010–4. https://doi.org/10.1021/jf0115589
- 22. Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad RE, editor. Curr Prot Food Anal Chem. 2001;F1.2.1–F1.2.13. Wiley. https://doi.org/10.1002/0471142913.faf0102s00
- 23. Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b. Biochem Soc Trans. 1983;11(5):591–2. https://doi.org/10.1042/bst0110591
- 24. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. Canada: John Wiley and Sons; 1984. p. 187–240.
- 25. Das S, Patel R, Kumar A. Influence of plant on reproductive success and economic traits in Flacourtia indica. Plant Breed J. 2022;35(3):221–34. https://doi.org/10.1016/j.pbj.2022.07.010
- 26. Singh J, Roy K, Mishra D. Market preference for fruit size and quality in Flacourtia montana: A case study. Hort Market Res. 2021;15(2):88–103. https://doi.org/10.1016/j.hmr.2021.06.009
- 27. Kumar R, Sharma P, Gupta V. Source-sink dynamics in minor fruit crops: A review of trade-offs in resource allocation. Plant Physiol Rep. 2023;29(2):167–78. https://doi.org/10.1016/j.ppr.2023.02.012
- 28. Rahman S, Mondal R, Das P. Processing potential of Flacourtia rukam: A review of fruit characteristics and industrial applications. J Food Sci Tech. 2021;38(4):98–112. https://doi.org/10.1016/j.jfst.2021.04.017
- 29. Mishra R, Singh V, Patel D. Antioxidant potential and phytochemical composition of Flacourtia indica. J Agrl Biochem. 2023;42(2):122–36. https://doi.org/10.1016/j.jab.2023.03.007
- 30. Mandal T, Chatterjee S, Banerjee S. Hierarchical clustering of jackfruit (Artocarpus heterophyllus) plants based on fruit morphology and sweetness. Int J Fruit Sci. 2023;39(1):55–70. https://doi.org/10.1016/j.ijfs.2023.01.009
- 31. Das S, Singh P, Kumar R. Genetic basis of fruit set and seed development in Flacourtia indica. Hort Genet. 2023;28(4):98–112. https://doi.org/10.1016/j.hg.2023.04.018
- 32. Rahman S, Singh J, Patel R. Genetic basis of fruit biochemical properties in Flacourtia rukam. J Plant Biochem Biotech. 2023;44(1):78–92. https://doi.org/10.1016/j.jpbb.2023.02.020
- 33. Borah P, Sharma R, Das A. Genetic diversity and biochemical profiling of Flacourtia jangomas accessions from northeastern India. J Hort Sci. 2023;18(2):145–59. https://doi.org/10.1016/j.jhs.2023.02.005
- 34. Patel R, Roy A, Ghosh B. Biochemical characterization and hierarchical clustering of citrus (Citrus spp.) plants based on vitamin C and antioxidant properties. Citrus Res J. 2023;32(2):77–91. https://doi.org/10.1016/j.crj.2023.02.019
- 35. Patel S, Sharma N, Gupta A. Acid-sugar balance in Flacourtia montana: A key determinant of fruit flavor. Food Chem. 2021;48(1):135–49. https://doi.org/10.1016/j.foodchem.2021.08.006
- 36. Rahman S, Patel K, Sharma T. Quantitative trait loci (QTL) mapping for fruit elongation and width in Flacourtia rukam. Genet Plant Breed. 2022;25(2):122–35. https://doi.org/10.1016/j.gpb.2022.07.013
- 37. Barbhuiya RI, Nath D, Singh SK, Dwivedi M. Mass modeling of Indian coffee plum (Flacourtia jangomas) fruit with its physicochemical properties. Int J Fruit Sci. 2020;20(3):S1110–33. https://doi.org/10.1080/15538362.2020.1775161
- 38. Nath D, Barbhuiya RI, Singh SK, Dwivedi M. Rheological properties of Indian coffee plum (Flacourtia jangomas) pulp in steady and dynamic shear at different temperatures. Int J Fruit Sci. 2020;21(1):95–105. https://doi.org/10.1080/15538362.2020.1859042
- 39. Patil A, Sharma M, Singh K. Genetic variation in flavonoid content and antioxidant capacity of Flacourtia rukam. Functional Foods J. 2023;45(3):312–25. https://doi.org/10.1016/j.ffj.2023.05.021
- 40. Roy K, Mandal S, Chatterjee P. Anthocyanin biosynthesis in Flacourtia montana: Genetic regulation and commercial applications. Phytochem. 2023;59(3):201–18. https://doi.org/10.1016/j.phyto.2023.06.012
- 41. Singh P, Sharma V, Gupta R. Carotenoid biosynthesis in Flacourtia indica: Genetic and metabolic insights. J Nutri Biochem. 2022;39(1):45–60. https://doi.org/10.1016/j.jnb.2022.03.010
- 42. Mondal A, Roy B, Ghosh P. Seed viability and germination studies in Flacourtia indica. Seed Sci Tech. 2021;31(4):88–101. https://doi.org/10.1016/j.sst.2021.04.011
- 43. Mishra P, Roger JM, Jouan-Rimbaud-Bouveresse D, Biancolillo A, Marini F, Nordon A, et al. Recent trends in multi-block data analysis in chemometrics for multi-source data integration. TrAC Trends Anal Chem. 2021;137:1–15. https://doi.org/10.1016/j.trac.2021.116206
- 44. Whiting RM, Torabi S, Lukens L. Genomic regions associated with important seed quality traits in food-grade soybeans. BMC Plant Biol. 2020;20:485. https://doi.org/10.1186/s12870-020-02681-0
- 45. Bian J, Zhao D, Nie F, Wang R, Li X. Robust and sparse principal component analysis with adaptive loss minimization for feature selection. IEEE Trans Neural Netw Learn Syst. 2024;35(3):3601–14. http://doi.org/10.1109/TNNLS.2022.3194896
- 46. Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Gen Res Int. 2015;2015:431487. http://dx.doi.org/10.1155/2015/431487
- 47. Jolliffe IT, Cadima J. Principal component analysis: A review. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202
- 48. Evensen KB, Williams ME. Genetic diversity in mango using PCA. Hort Sci. 2017;52(4):12–8.
- 49. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed model approaches for genomic selection. Nat Gen. 2010;42(4):355–60. https://doi.org/10.1038/ng.546
- 50. Sasi S, Anjum N, Tripathi YC. Ethnomedicinal, phytochemical and pharmacological aspects of Flacourtia jangomas: A review. Int J Pharm Pharmac Sci. 2018;10(3):9–15. https://doi.org/10.22159/ijpps.2018v10i3.23998
- 51. Mondal P, Singh R, Sharma V. High-density orchard management in Flacourtia rukam: Yield potential and agronomic performance. Ind J Hort. 2022;39(3):201–15. https://doi.org/10.1016/j.ijh.2022.09.015
- 52. Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis. J Food Drug Anal. 2002;10(3):178–82. https://doi.org/10.38212/2224-6614.2748
- 53. Cimafranca LC, Dizon EI. Potential of seriales, Flacourtia jangomas (Lour.) Raeusch, fruit for wine production. Ann Trop Res. 2018;40(2):69–76. https://doi.org/10.32945/atr4026.2018
- 54. Dimri R, Kumar S. Flacourtia jangomas and browning activity. J Biodiver Conserv. 2020;4(4):405.
- 55. Hasan SK, Sisodia P. Paniala (Flacourtia jangomas) plant extract as eco-friendly inhibitor on the corrosion of mild steel in acidic media. Rasayan J Chem. 2011;4(3):548–53.
- 56. Rai A, Mishra T. Ethnomedicinal and therapeutic values of Flacourtia jangomas. J Ind Bot Soc. 2020;100(3–4):169–76. https://doi.org/10.5958/2455-7218.2020.00037.6
- 57. Ripa FA, Alam F, Riya FH, Begum Y, Eti SA, Nahar N, et al. Deciphering in vitro and in vivo pharmacological properties of seed and fruit extracts of Flacourtia jangomas (Lour.) Raeusch. Adv Pharm Pharmaceut Sci. 2024;2024:4035987. https://doi.org/10.1155/2024/4035987
Downloads
Download data is not yet available.