Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Green synthesis of silver nanoparticles (AgNPs) with Hypericum wightianum : Characterization and evaluation of its antibacterial activity, antioxidant activity and toxicity assessment on Artemia salina

DOI
https://doi.org/10.14719/pst.9740
Submitted
31 May 2025
Published
19-08-2025 — Updated on 22-08-2025
Versions

Abstract

In the present study, in vitro H. wightianum plant extract was used for the phytosynthesis of AgNPs. It was observed that the reduction of aqueous silver ions (Ag+) to AgNPs was facilitated by the extract, resulting in the formation of stable AgNPs. The synthesized AgNPs were characterized through various spectroscopic and microscopic analyses. The nanoparticles showed a sharp absorbance peak at 480 nm on UV-Vis spectroscopy. Fourier Transform Infrared Spectroscopy (FTIR) confirms the presence of flavonol, glycosides and phloroglucinols. X-ray diffraction (XRD) was used to characterize the reduction of silver ions to silver element. It shows the different distinct peaks at 25.78 °, 39.41 °, 41.37 ° and 76.26 ° correspond to the (0 1 2), (1 1 1), (1 0 1) and (3 1 1) planes of standard XRD peak reflections of silver crystal. The formation of monodispersed low polydispersity nanoparticles (16.47 nm) was revealed by the transmission electron micrograph (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis confirms the presence of elemental silver. AgNPs showed good antioxidant properties in DPPH (2, 2-diphenyl-1-picrylhydrazyl), hydrogen peroxide (H2O2), nitric oxide (NO) radical scavenging and ferric reducing power assays. This result proved that AgNPs have strong antioxidant activity, which is comparable to the standard. Antioxidant activity of AgNPs increased dose-dependently, based on the reduction of electron or hydrogen acceptors. Antibacterial activity of AgNPs was demonstrated against test strains, showing significant inhibition. A maximum zone of inhibition of 15 mm was observed against Staphylococcus aureus, followed by 14 mm against Pseudomonas aeruginosa at 80 µg/mL concentration. The AgNPs showed moderate toxicity against A. salina. The present study demonstrates the potential of in vitro H. wightianum extract for the phytosynthesis of AgNPs with antioxidant, antibacterial and moderate toxicity properties.

References

  1. 1. Panda MK, Dhal NK, Kumar M, Mishra PM, Behera RK. Green synthesis of silver nanoparticles and its potential effect on phytopathogens. Mater Today Proc. 2021;35(2):233–38. https://doi.org/10.1016/j.matpr.2020.05.188
  2. 2. Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34(2):107518. https://doi.org/10.1016/j.cclet.2022.05.032
  3. 3. Bhakya S, Muthukrishnan S, Sukumaran M, Grijalva M, Cumbal L, Benjamin JHF, et al. Antimicrobial, antioxidant and anticancer activity of biogenic silver nanoparticles–an experimental report. RSC Adv. 2016;84(6):81436–46. https://doi.org/10.1039/C6RA17569D
  4. 4. Muthukrishnan S, Kumar TS, Rao MV. Anticancer activity of biogenic nanosilver and its toxicity assessment on Artemia salina - evaluation of mortality, accumulation and elimination: an experimental report. J Environ Chem Eng. 2017;5(2):1685–95. https://doi.org/10.1016/j.jece.2017.03.004
  5. 5. Singh RP, Handa R, Manchanda G. Nanoparticles in sustainable agriculture: an emerging opportunity. J Control Release. 2021;329:1234–48. https://doi.org/10.1016/j.jconrel.2020.10.051
  6. 6. Liu B, Zhuang J, Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ Sci Nano. 2020;7(8):2195–213. https://doi.org/10.1039/D0EN00449A
  7. 7. Taha TB, Barzinjy AA, Hussain FHS, Nurtayeva T. Nanotechnology and computer science: trends and advances. Memor Mater Devices Circuits Syst. 2022;2:100011. https://doi.org/10.1016/j.memori.2022.100011
  8. 8. Wei Y, Yan B. Nano products in daily life: to know what we do not know. Natl Sci Rev. 2016;3(4):414–15. https://doi.org/10.1093/nsr/nww073
  9. 9. Boopathi S, Davim JP. Applications of nanoparticles in various manufacturing processes. In: Sustainable Utilization of Nanoparticles and Nanofluids in Engineering Applications. IGI Global; 2023. p. 1–31 https://doi.org/10.4018/978-1-6684-9135-5.ch001
  10. 10. Zahoor M, Nazir N, Iftikhar M, Naz S, Zekker I, Burlakovs J, et al. A review on silver nanoparticles: classification, various methods of synthesis and their potential roles in biomedical applications and water treatment. Water. 2021;13(16):2216. https://doi.org/10.3390/w13162216
  11. 11. Abed MS, Jawad ZA. Nanotechnology for defence applications. In: Mubarak NM, Gopi S, Balakrishnan P, editors. Nanotechnology for Electronic Applications. Materials Horizons: From Nature to Nanomaterials. Singapore: Springer; 2022. p. 187–205 https://doi.org/10.1007/978-981-16-6022-1_10
  12. 12. Muthukrishnan S, Bhakya S, Kumar TS, Rao MV. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–an endemic species. Ind Crops Prod. 2015;63:119–24. https://doi.org/10.1016/j.indcrop.2014.10.022
  13. 13. Sreelekshmi R, Siril EA, Muthukrishnan S. Role of biogenic silver nanoparticles on hyperhydricity reversion in Dianthus chinensis L. an in vitro model culture. J Plant Growth Regul. 2022;41:23–39. https://doi.org/10.1007/s00344-020-10276-0
  14. 14. Kumar VK, Muthukrishnan S, Rajalakshmi R. Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: an insight from antioxidative enzyme activities and genetic similarity studies. Curr Plant Biology. 2020;23:100158. https://doi.org/10.1016/j.cpb.2020.100158
  15. 15. Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G. Use of the genus Artemia in ecotoxicity testing. Environ Pollut. 2006;144(2):453–62. https://doi.org/10.1016/j.envpol.2005.12.037
  16. 16. Rekka E, Kourounakis PN. Effect of hydroxyethyl rutosides and related compounds on lipid peroxidation and free radical scavenging activity. some structural aspects. J Pharm Pharmacol. 1991;43(7):486–91. https://doi.org/10.1111/j.2042-7158.1991.tb03519.x
  17. 17. Asada K. Ascorbate peroxidase–a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant. 1992;85(2):235–41. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  18. 18. Marcocci L, Maguire JJ, Droylefaix MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994;201(2):748–55. https://doi.org/10.1006/bbrc.1994.1764
  19. 19. Corzo A, Niell FX. Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in-situ method. J Exp Mar Biol Ecol. 1991;146(2):181–91. https://doi.org/10.1016/0022-0981(91)90024-Q
  20. 20. Sen A, Batra A. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. Int J Curr Pharm Res. 2012;4(2):67–73.
  21. 21. Ates M, Daniels J, Arslan Z, Farah IO. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation and toxicity. Environ Monit Assess 2013;185:3339–48. https://doi.org/10.1007/s10661-012-2794-7
  22. 22. Cimino MC. New OECD genetic toxicology guidelines and interpretation of results. In: Genetic toxicology and cancer risk assessment. CRC Press; 2001. pp. 237–62
  23. 23. Jiang H, Moon KS, Zhang Z, Pothukuchi S, Wong CP. Variable frequency microwave synthesis of silver nanoparticles. J Nanopart Res. 2006;8:117–24. https://doi.org/10.1007/s11051-005-7522-6
  24. 24. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2003;28(4):313–18. https://doi.org/10.1016/S0927-7765(02)00174-1
  25. 25. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B. 2003;107(3):668–77. https://doi.org/10.1021/jp026731y
  26. 26. Bi S, Song D, Tian Y, Zhou X, Liu Z, Zhang H. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61(4):629–36. https://doi.org/10.1016/j.saa.2004.05.028
  27. 27. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Microbial synthesis of semiconductor CdS nanoparticles, their characterization and their use in the fabrication of an ideal diode. Biotechnol Bioeng. 2002;78(5):583–88. https://doi.org/10.1002/bit.10233
  28. 28. Mata R, Nakkala JR, Sadras SR. Biogenic silver nanoparticles from Abutilon indicum: their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf B Biointerfaces. 2015;128:276–86. https://doi.org/10.1016/j.colsurfb.2015.01.052
  29. 29. Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces. 2009;68(1):55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021
  30. 30. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 2010;6(1):103–09. https://doi.org/10.1016/j.nano.2009.04.006
  31. 31. Feng N, Guo X, Liang S. Adsorption study of copper (II) by chemically modified orange peel. J Hazard Mater. 2009;164(2-3):1286–92. https://doi.org/10.1016/j.jhazmat.2008.09.096
  32. 32. Qiu L, Liu F, Zhao L, Yang W, Yao J. Evidence of a unique electron donor – acceptor property for platinum nanoparticles as studied by XPS. Langmuir. 2006;22(10):4480–82. https://doi.org/10.1021/la053071q
  33. 33. Bouhajeb R, Abreu AC, Fernández S, Bayrem-Ghedira M, Chekir-Ghedira L, Fernández I, et.al. Green synthesis of highly monodisperse and spherical Ag nanoparticles by a combination of Teucrium ramosissimum Desf. (Lamiaceae) extracts with emphasis on the stabilizing and capping biomolecules.ACS Sustainable Chem Eng. 2024;12(10):4132–45. https://doi.org/10.1021/acssuschemeng.3c07504
  34. 34. Safa MAT, Koohestani H. Green synthesis of silver nanoparticles with green tea extract from silver recycling of radiographic films. Results Eng. 2024;21:101808. https://doi.org/10.1016/j.rineng.2024.101808
  35. 35. Zulfiqar Z, Khan RRM, Summer M, Saeed Z, Pervaiz M, Rasheed S, et al. Plant-mediated green synthesis of silver nanoparticles: synthesis, characterization, biological applications and toxicological considerations: a review. Biocatal Agric Biotechnol. 2024;57:103121. https://doi.org/10.1016/j.bcab.2024.103121
  36. 36. Ibrahim NH, Taha GM, Hagaggi NSA, Moghazy MA. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chem. 2024;18:7. https://doi.org/10.1186/s13065-023-01105-y
  37. 37. Velmurugan G, Chohan JS, Kannan VS, Paramasivam P, Shankar VS, Maranan R. Green synthesis of silver nanoparticles from southern Eucalyptus globulus: potent antioxidants and photocatalysts for rhodamine B dye degradation. Desalin Water Treat. 2024;320:100687. https://doi.org/10.1016/j.dwt.2024.100687
  38. 38. Padalia H, Moteriya P, Chanda S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem. 2015;8(5):732–41. https://doi.org/10.1016/j.arabjc.2014.11.015
  39. 39. GÜLÇin I, Alici HA, Cesur M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem Pharm Bull. 2005;53(3):281–85. https://doi.org/10.1248/cpb.53.281
  40. 40. Sagbo IJ, Afolayan AJ, Bradley G. Antioxidant, antibacterial and phytochemical properties of two medicinal plants against the wound infecting bacteria. Asian Pac J Trop Biomed. 2017;7(9):817–25. https://doi.org/10.1016/j.apjtb.2017.08.009
  41. 41. Boora F, Chirisa E, Mukanganyama S. Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. J Food Process. 2014;918018:7p. https://doi.org/10.1155/2014/918018
  42. 42. Subramanian R, Subbramaniyan P, Raj V. Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power. SpringerPlus. 2013;2:28. https://doi.org/10.1186/2193-1801-2-28
  43. 43. Paszek MJ, DuFort CC, Rubashkin MG, Davidson MW, Thorn KS, Liphardt JT, et al. Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nat methods. 2012;9:825–27. https://doi.org/10.1038/nmeth.2077
  44. 44. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol. 2008;24(2):192–96.
  45. 45. Kokkoris M, Trapalis CC, Kossionides S, Vlastou R, Nsouli B, Grötzschel R, et al. RBS and HIRBS studies of nanostructured AgSiO2 sol-gel thin coatings. Nuclear Nucl Instrum Methods Phys Res B. 2002;188(1–4):67–72. https://doi.org/10.1016/S0168-583X(01)01020-5
  46. 46. Carbone M, Donia DT, Sabbatella G, Antiochia R. Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci. 2016;28(4):273–79. https://doi.org/10.1016/j.jksus.2016.05.004
  47. 47. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. https://doi.org/10.7150/thno.45413
  48. 48. Mahdi SS, Vadood R, Nourdahr R. Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature. Glob Vet. 2012; 9(3):284–89.
  49. 49. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci. 2016;6:755–66. https://doi.org/10.1007/s13204-015-0473-z
  50. 50. Balachandar R, Navaneethan R, Biruntha M, Kumar KKA, Govarthanan M, Karmegam N. Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Mater Lett. 2022;311:131572. https://doi.org/10.1016/j.matlet.2021.131572
  51. 51. Palácio SM, de Almeida JCB, de Campos ÉA, Veit MT, Ferreira LK, Deon MTM. Silver nanoparticles effect on Artemia salina and Allium cepa organisms: influence of test dilution solutions on toxicity and particles aggregation. Ecotoxicology. 2021;30:836–50. https://doi.org/10.1007/s10646-021-02393-7
  52. 52. Kamaraj C, Ragavendran C, Manimaran K, Sarvesh S, Islam ARMT, Malafaia G. RETRACTED: Green synthesis of silver nanoparticles from Cassia auriculata: targeting antibacterial, antioxidant activity and evaluation of their possible effects on saltwater microcrustacean, Artemia nauplii (non-target organism). Sci Total Environ. 2023;861:160575. https://doi.org/10.1016/j.scitotenv.2022.160575
  53. 53. Unal İ, Egri S, Ates M. Green Synthesis (Paeonia kesrouanensis) of silver nanoparticles and toxicity studies in Artemia salina. Bull Environ Contam Toxicol. 2022;109:1150–54. https://doi.org/10.1007/s00128-022-03601-8
  54. 54. Sarkheil M, Johari SA, An HJ, Asghari S, Park HS, Sohn EK, et al. Acute toxicity, uptake and elimination of zinc oxide nanoparticles (ZnO NPs) using saltwater microcrustacean, Artemia franciscana. Environ Toxicol Pharmacol. 2018;57:181–88. https://doi.org/10.1016/j.etap.2017.12.018

Downloads

Download data is not yet available.