Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Evaluation of antioxidant properties of selected cyanobacterial strains for potential use as natural antioxidants

DOI
https://doi.org/10.14719/pst.9793
Submitted
4 June 2025
Published
21-08-2025 — Updated on 16-09-2025
Versions

Abstract

Cyanobacteria are recognized for their antioxidant properties; however, comparative analyses of strain-specific antioxidant capacity are scarce, particularly among isolates from agricultural soils. In this study, seven cyanobacterial strains (Nostoc sp., Anabaena sp., Westiellopsis sp., Oscillatoria sp., Tolypothrix sp., Calothrix sp., Phormidium sp.), isolated from rice fields of Uttar Pradesh, India, were evaluated for their antioxidant capacity. Ferric reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation decolorization assay were used to
analyze antioxidant activity. Trolox (μmol trolox g-1) was used to standardise the antioxidant capacity. Anabaena sp. showed the highest antioxidant activity among all the strains tested in all three assays, with values of 9.12 ± 0.05 μmol trolox g-1 ABTS assay, 8.96 ± 0.03 μmol trolox g-1 FRAP assay and 8.93 ± 0.03 μmol trolox g-1 DPPH assay. Tolyprothrix sp. showed the lowest antioxidant activity in all assays, with values of 5.02 ± 0.05 μmol trolox g-1 ABTS assay, 4.12 ± 0.03 μmol trolox g-1 FRAP assay and 4.01 ± 0.02 μmol trolox g-1 DPPH assay. These results imply that the species and assay technique significantly influence the antioxidant capacity of cyanobacterial strains. The study emphasises the importance of selecting appropriate assay techniques when assessing the antioxidant potential of
cyanobacteria. The observed diversity underscores the necessity of using standardised protocols to evaluate and compare the antioxidant characteristics of various strains. Further research is recommended to explore potential applications in medicines and nutraceuticals and to investigate the underlying metabolic processes responsible for the observed antioxidant effects. This comparative investigation highlights the significance of selecting suitable cyanobacterial strains for the extraction of antioxidant compounds. By identifying high-activity strains, researchers can enhance the application of natural antioxidants in food preservation, cosmetic formulations and therapeutics.

References

  1. 1. Patra S, Saha A, Pal SC, Islam AR, Halder K, Srivastava AK, et al. Highlighting the role of traditional paddy for sustainable agriculture and livelihood: Issues, policy intervention and the pathways. Discov Sustain. 2025;6(1):181. https://doi.org/10.1007/s43621-025-00989-1
  2. 2. Ashitha A, Rakhimol KR. Fate of the conventional fertilizers in environment. In: Lewu FB, Volova T, Thomas T, Rakhimal KR, editors. Controlled release fertilizers for sustainable agriculture. Academic Press; 2021. p. 25-39. https://doi.org/10.1016/B978-0-12-819555-0.00002-9
  3. 3. Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11(5):1485. https://doi.org/10.3390/su11051485
  4. 4. Yadav S, Srivastava R, Singh N, Kanda T, Verma E, Choudhary P, et al. Cyanobacteria‐pesticide interactions and their implications for sustainable rice agroecosystems. Int J Microbiol. 2025;2025(1):7265036. https://doi.org/10.1155/ijm/7265036
  5. 5. Tiwari S, Patel A, Yadav V, Khandelwal A, Singh RP, Arya D, et al. Nanotechnology in agriculture: Enhancing crop productivity and addressing toxicity in plants and algae. Nanotechnol Environ Eng. 2025;10(2):32. https://doi.org/10.1007/s41204-025-00428-6
  6. 6. Pandey P, Pandey D, Gupta A, Gupta R, Tiwari S, Singh SP. Cyanobacterial green chemistry: A blue-green approach for a sustainable environment, energy, and chemical production. RSC Sustain. 2025;3:661-75. https://doi.org/10.1039/D4SU00448E
  7. 7. Misu IJ, Kayess MO, Siddiqui MN, Gupta DR, Islam MN, Islam T. Microbiome engineering for sustainable rice production: Strategies for biofertilization, stress tolerance, and climate resilience. Microorganisms. 2025;13(2):233. https://www.mdpi.com/2076-2607/13/2/233#
  8. 8. Desikachary TV. Cyanophyta. Indian Council of Agriculture, New Delhi; 1959.
  9. 9. Xiao L, Liu J, Hua MZ, Lu X. Rapid determination of total phenolic content and antioxidant capacity of maple syrup using Raman spectroscopy and deep learning. Food Chem. 2025;463:141289. https://doi.org/10.1016/j.foodchem.2024.141289
  10. 10. Nicolescu A, Bunea CI, Mocan A. Total flavonoid content revised: An overview of past, present, and future determinations in phytochemical analysis. Analyt Biochem. 2025;115794. https://doi.org/10.1016/j.ab.2025.115794
  11. 11. Bennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 1973;58(2):419-35. https://doi.org/10.1083/jcb.58.2.419
  12. 12. Jensen A. Chlorophylls and carotenoids. Handbook of phycological methods, physiological and biochemical methods. Cambridge University Press, Cambridge; 1978.
  13. 13. Brand-Williams W, Cuvelier ME, Berset CL. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  14. 14. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70-76. https://doi.org/10.1006/abio.1996.0292
  15. 15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-37. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. 16. De Silva AG, Hashim ZK, Solomon W, Zhao JB, Kovács G, Kulmány IM, et al. Unveiling the role of edaphic microalgae in soil carbon sequestration: Potential for agricultural inoculants in climate change mitigation. Agriculture. 202416;14(11):2065. https://doi.org/10.3390/agriculture14112065
  17. 17. Bauenova MO, Sarsekeyeva FK, Sadvakasova AK, Kossalbayev BD, Mammadov R, Token AI, et al. Assessing the efficacy of cyanobacterial strains as Oryza sativa growth biostimulants in saline environments. Plants. 2024;13(17):2504. https://doi.org/10.3390/plants13172504
  18. 18. Brick MB, Hussein MH, Mowafy AM, Hamouda RA, Ayyad AM, Refaay DA. Significance of siderophore-producing cyanobacteria on enhancing iron uptake potentiality of maize plants grown under iron-deficiency. Microb Cell Fact. 2025;24(1):3. https://doi.org/10.1186/s12934-024-02618-4
  19. 19. Sabat S, Bej S, Swain S, Bishoyi AK, Sahoo CR, Sabat G, et al. Phycochemistry and pharmacological significance of filamentous cyanobacterium Spirulina sp. Bioresour Bioprocess. 2025;12(1):27. https://doi.org/10.1186/s40643-025-00861-0
  20. 20. Abrashev R, Miteva-Staleva J, Gocheva Y, Stoyancheva G, Dishliyska V, Spasova B, et al. Cell response to oxidative stress in Antarctic filamentous fungi. Appl Sci. 2025;15(9):5149. https://doi.org/10.3390/app15095149
  21. 21. Xing Y, Xie Y, Wang X. Enhancing soil health through balanced fertilization: A pathway to sustainable agriculture and food security. Front Microbio. 2025;16:1536524. https://doi.org/10.3389/fmicb.2025.1536524
  22. 22. Cannavò S, Paleni C, Costarelli A, Valeri MC, Cerri M, Saccomanno A, et al. Assessing changes in root architecture, developmental timing, transcriptional and hormonal profiles in rice co-cultivated with Azolla filiculoides. Rice Sci. 2025:27. https://doi.org/10.1016/j.rsci.2025.03.004

Downloads

Download data is not yet available.