Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Advances in IoT-enabled smart diagnostics for early detection of fruit crop diseases under climate change

DOI
https://doi.org/10.14719/pst.9796
Submitted
3 June 2025
Published
10-10-2025

Abstract

In perennial fruit crops, climate conditions play a crucial role in influencing phenological stages, fruit quality traits and particularly the occurrence and severity of pests and diseases. The predominant cause of fruit contamination is attributed to fungal and bacterial pathogens, which significantly affect crop health, yield and quality. Mitigating these impacts at an early stage requires advanced methodologies for accurate disease identification and detection. However, a major challenge in precision and smart agriculture lies in the development and availability of reliable image datasets for automated detection, visualization and classification of plant diseases. The growing adoption of the Internet of Things (IoT) has created opportunities for robust systems capable of managing large volumes of agricultural data through efficient processing, storage and transmission. The integration of image processing techniques with intelligent algorithms within IoT frameworks has emerged as a transformative approach, delivering enhanced precision and accuracy in disease monitoring and management across fruit crops. IoT-enabled smart diagnostic systems not only reduce production costs and resource wastage but also revolutionize horticultural practices through automation, leading to improved quality and yield. This review highlights advances in IoT-enabled smart diagnostics for detecting fruit crop diseases under climate conditions. The scope includes examining the interaction between climate variability and disease dynamics, analysing IoT-based frameworks for real-time monitoring and diagnostics and identifying current challenges and future opportunities for sustainable disease management in perennial fruit crops.

References

  1. 1. Neerubai MS, Babu GA. Automatic disease prediction system for various crops by using the internet of things and deep learning technologies. Int J Mech Eng. 2022;7(6).
  2. 2. Fuentes S, Tongson E, Viejo CG. New developments and opportunities for AI in viticulture, pomology and soft-fruit research: a mini-review and invitation to contribute articles. Front Hortic. 2023;2:1282615. https://doi.org/10.3389/fhort.2023.1282615
  3. 3. Ranjan P, Brahmi P, Tyagi V, Ranjan JK, Srivastava V, Yadav SK, et al. Global interdependence for fruit genetic resources: status and challenges in India. Food Secur. 2022;14(3):591-619. https://doi.org/10.1007/s12571-021-01249-6
  4. 4. Sherman WB, Beckman TG. Climatic adaptation in fruit crops. Acta Hortic. 2002;622:411-28. https://doi.org/10.17660/ActaHortic.2003.622.43
  5. 5. Ventura JA, Lima IDM, Martins MVV, Culik MP, Costa H. Impact and management of diseases in the propagation of fruit plants. Rev Bras Frutic. 2019;41(4):647. https://doi.org/10.1590/0100-29452019647
  6. 6. Medda S, Fadda A, Mulas M. Influence of climate change on metabolism and biological characteristics in perennial woody fruit crops in the Mediterranean environment. Horticulturae. 2022;8(4):273. https://doi.org/10.3390/horticulturae8040273
  7. 7. Sen V, Rana RS, Chauhan RC. Impact of climate variability on apple production and diversity in Kullu valley, Himachal Pradesh. Indian J Hort. 2015;72(1):14-20. https://doi.org/10.5958/0974-0112.2015.00003.1
  8. 8. Salama AM, Ezzat A, El-Ramady H, Alam-Eldein SM, Okba SK, Elmenofy HM, et al. Temperate fruit trees under climate change: challenges for dormancy and chilling requirements in warm winter regions. Horticulturae. 2021;7(4):86.
  9. https://doi.org/10.3390/horticulturae7040086
  10. 9. Youssef K, Roberto SR. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of 'Italia' table grapes. Postharvest Biol Technol. 2014;87:95-102.
  11. https://doi.org/10.1016/j.postharvbio.2013.08.011
  12. 10. Hossain MT, Hossain SMM, Bakr MK, Rahman AM, Uddin SN. Survey on major diseases of vegetable and fruit crops in Chittagong region. Bangladesh J Agril Res. 2010;35(3):423-9.https://doi.org/10.3329/bjar.v35i3.6449
  13. 11. Rahaman M, Chowdhury M, Rahman MA, Ahmed H, Hossain M, Rahman MH, et al. A deep learning based smartphone application for detecting mango diseases and pesticide suggestions. Int J Com Dig Sys. 2023;13(1):1.
  14. https://doi.org/10.12785/ijcds/1301104
  15. 12. Saiz-Rubio V, Rovira-Más F. From smart farming towards agriculture 5.0: a review on crop data management. Agronomy. 2020;10(2):207. https://doi.org/10.3390/agronomy10020207
  16. 13. Behera SK, Sethy PK, Sahoo SK, Panigrahi S, Rajpoot SC. On-tree fruit monitoring system using IoT and image analysis. Concurrent Eng-Res A. 2021;29(1):6-15. https://doi.org/10.1177/1063293X20988395
  17. 14. Singh G. Machine learning models in stock market prediction. Int J Innov Technol Explor Eng. 2022;11(3):18-28.
  18. https://doi.org/10.35940/ijitee.C9733.0111322
  19. 15. Madakam S, Ramaswamy R, Tripathi S. Internet of Things (IoT): a literature review. J Comput-Mediat Commun. 2015;3(5):164-73.
  20. https://doi.org/10.4236/jcc.2015.35021
  21. 16. Aceto G, Persico V, Pescapé A. A survey on information and communication technologies for industry 4.0: state-of-the-art, taxonomies, perspectives and challenges. IEEE Commun Surv Tutor. 2019;21(4):3467-501.
  22. https://doi.org/10.1109/COMST.2019.2938259
  23. 17. Saxena L, Armstrong L. A survey of image processing techniques for agriculture. Proceedings of Asian Federation for Information Technology in Agriculture. 2014:401-13.
  24. 18. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. Machine learning in agriculture: a review. Sensors. 2018;18(8):2674.
  25. https://doi.org/10.3390/s18082674
  26. 19. Jangra MS, Sharma JP. Climate resilient and apple production in Kullu valley of Himachal Pradesh. Int J Farm Sci. 2013;3(1):90-7.
  27. 20. Ameglio T, Alves G, Bonhomme M, Cochard H, Ewers F, Guilliot A, et al. Winter functioning of walnut: involvement in branching processes. In: 4. Colloque international sur l'arbre, IQ Collectif. 2000.
  28. 21. Bhattacharjee P, Warang O, Das S, Das S. Impact of climate change on fruit crops: a review. Curr World Environ. 2022;17(2):319-30.
  29. https://doi.org/10.12944/CWE.17.2.4
  30. 22. Parmesan C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol. 2007;13(9):1860-72. https://doi.org/10.1111/j.1365-2486.2007.01404.x
  31. 23. Vishnoi VK, Kumar K, Kumar B. Plant disease detection using computational intelligence and image processing. J Plant Dis Prot. 2021;128:19-53.
  32. https://doi.org/10.1007/s41348-020-00368-0
  33. 24. Bordoloi A, Saharia N, Goswami J, Boruah PN. Influence of climate change in disease outbreak of fruit crops. In: Climate change and pests: invasion, emergence, outbreak and management. 2024:53-67.
  34. 25. Jamil FN, Tang CN, Saidi NB, Lai KS, Baharum NA. Fusarium wilt in banana: epidemics and management strategies. In: Baimey HK, Hamamouch N, Kolombia YA, editors. Horticultural crops. London: IntechOpen; 2019:229-331.
  35. 26. Blomme G, Dita M, Jacobsen KS, Pérez Vicente L, Molina A, Ocimati W, et al. Bacterial diseases of bananas and enset: current state of knowledge and integrated approaches toward sustainable management. Front Plant Sci. 2017;8:1290.
  36. https://doi.org/10.3389/fpls.2017.01290
  37. 27. Thirugnanavel A, Balamohan TN, Karunakaran G, Manoranjitham SK. Effect of papaya ringspot virus on growth, yield and quality of papaya (Carica papaya) cultivars. Indian J Agric Sci. 2015;85(8):1069-73. https://doi.org/10.56093/ijas.v85i8.50852
  38. 28. Shen F, Wu W, Han X, Wang J, Li Y, Liu D. Study on the occurrence law and green control of grape gray mold from the perspective of ecological balance. Bioengineered. 2021;12(1):779-90. https://doi.org/10.1080/21655979.2021.1888578
  39. 29. Anderson J, Pegg KG, Scott C, Drenth A. Phosphonate applied as a pre-plant dip controls Phytophthora cinnamomi root and heart rot in susceptible pineapple hybrids. Australas Plant Pathol. 2012;41:59-68. https://doi.org/10.1007/s13313-011-0090-6
  40. 30. Thao L, Hien L, Liem N, Thanh H, Khanh T, Binh V, et al. First report of Phytopythium vexans causing root rot disease on durian in Vietnam. New Dis Rep. 2020;41(2):2044-588.https://doi.org/10.5197/j.2044-0588.2020.041.002
  41. 31. Kumar V, Kumar A, Nath V, Kumar R. New threats of insect pests and disease in litchi (Litchi chinensis Sonn.) in India. In: IV International Symposium on Lychee, Longan and Other Sapindaceae Fruits 1029. 2012:.417-24.
  42. https://doi.org/10.17660/ActaHortic.2014.1029.53
  43. 32. Coakley SM, Scherm H, Chakraborty S. Climate change and plant disease management. Annu Rev Phytopathol. 1999;37(1):399-426. https://doi.org/10.1146/annurev.phyto.37.1.399
  44. 33. Ali F, Rehman A, Hameed A, Sarfraz S, Rajput NA, Atiq M. Climate change impact on plant pathogen emergence: artificial intelligence approach. In: Plant quarantine challenges under climate change anxiety. Cham: Springer Nature Switzerland; 2024:281-303.
  45. https://doi.org/10.1007/978-3-031-56011-8_9
  46. 34. Garrett K, Bebber D, Etherton B, Gold K, Plex Sulá A, Selvaraj MG. Climate change effects on pathogen emergence: artificial intelligence to translate big data for mitigation. Annu Rev Phytopathol. 2022;60:357-78.
  47. https://doi.org/10.1146/annurev-phyto-021021-042636
  48. 35. Delfani P, Thuraga V, Banerjee B, Chawade A. Integrative approaches in modern agriculture: IoT, ML and AI for disease forecasting amidst climate change. Precis Agric. 2024;25(5):2589-613. https://doi.org/10.1007/s11119-024-10164-7
  49. 36. Truong T, Dinh A, Wahid K. An IoT environmental data collection system for fungal detection in crop fields. In: 2017 IEEE 30th Canadian conference on electrical and computer engineering (CCECE). IEEE; 2017:1-4. https://doi.org/10.1109/CCECE.2017.7946787
  50. 37. Kelman A, Shurtleff MC, Pelczar MJ, Pelczar RM. Plant disease. Encyclopedia Britannica. 2023.
  51. 38. Karthika J, Santhose M, Sharan T. Disease detection in cotton leaf spot using image processing. J Phys Conf Ser. 2021;1916(1):012224.
  52. https://doi.org/10.1088/1742-6596/1916/1/012224
  53. 39. Dhaka VS, Meena SV, Rani G, Sinwar D, Ijaz MF, Woźniak M. A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors. 2021;21(14):4749. https://doi.org/10.3390/s21144749
  54. 40. Gokhale P, Bhat O, Bhat S. Introduction to IoT. Int Adv Res J Sci Eng Technol. 2018;5(1):41-4. https://doi.org/10.2514/5.9781624104893.0001.0010
  55. 41. Fischer JE, Crabtree A, Rodden T, Colley JA, Costanza E, Jewell MO, et al. "Just whack it on until it gets hot": working with IoT data in the home. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 2016:5933-44.
  56. https://doi.org/10.1145/2858036.2858518
  57. 42. Jha K, Doshi A, Patel P, Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif Intell Agric. 2019;2:1-12. https://doi.org/10.1016/j.aiia.2019.05.004
  58. 43. Ahsan MM, Luna SA, Siddique Z. Machine-learning-based disease diagnosis: a comprehensive review. Healthcare. 2022;10(3):541.
  59. https://doi.org/10.3390/healthcare10030541
  60. 44. Prabha K. Disease sniffing robots to apps fixing plant diseases: applications of artificial intelligence in plant pathology-a mini review. Indian Phytopathol. 2021;74(1):13-20. https://doi.org/10.1007/s42360-020-00290-3
  61. 45. Morchid A, El Alami R, Raezah AA, Sabbar Y. Applications of internet of things and sensors technology to increase food security and agricultural sustainability: benefits and challenges. Ain Shams Eng J. 2023;102509. https://doi.org/10.1016/j.asej.2023.102509
  62. 46. Arshad J, Aziz M, Al-Huqail AA, Zaman MHU, Husnain M, Rehman AU, et al. Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield. Sustainability. 2022;14(2):827. https://doi.org/10.3390/su14020827
  63. 47. Shi X, An X, Zhao Q, Liu H, Xia L, Sun X, et al. State-of-the-art internet of things in protected agriculture. Sensors. 2019;19(8):833.
  64. https://doi.org/10.3390/s19081833
  65. 48. Narendran S, Pradeep P, Ramesh MV. An Internet of Things based sustainable water management. In: 2017 IEEE global humanitarian technology conference (GHTC). IEEE; 2017:1-6. https://doi.org/10.1109/GHTC.2017.8239320
  66. 49. Alharbi HA, Aldossary M. Energy-efficient edge-fog-cloud architecture for IoT-based smart agriculture environment. IEEE Access. 2021;9:110480-92. https://doi.org/10.1109/ACCESS.2021.3101397
  67. 50. Kim WS, Lee WS, Kim YJ. A review of the applications of the internet of things for agricultural automation. J Biosyst Eng. 2020;45:385-400. https://doi.org/10.1007/s42853-020-00078-3
  68. 51. Zhang M, Han Y, Li D, Xu S, Huang Y. Smart horticulture as an emerging interdisciplinary field combining novel solutions: past development, current challenges and future perspectives. Hortic Plant J. 2023. https://doi.org/10.1016/j.hpj.2023.03.015
  69. 52. Torky M, Hassanein AE. Integrating blockchain and the internet of things in precision agriculture: analysis, opportunities and challenges. Comput Electron Agric. 2020;178:105476. https://doi.org/10.1016/j.compag.2020.105476
  70. 53. Khan Z, Zahid Khan M, Ali S, Abbasi IA, Ur Rahman H, Zeb U, et al. Internet of things-based smart farming monitoring system for bolting reduction in onion farms. Sci Program. 2021;2021(1):7101983. https://doi.org/10.1155/2021/7101983
  71. 54. Geethalakshmi V, Kokilavani S, Ramanathan SP, Dheebakaran GA, Sathyamoorthy NK, Maragatham N. Monthly rainfall hind-cast using machine learning algorithms for Coimbatore, Tamil Nadu. Mausam. 2022;73(1):19-26. https://doi.org/10.54302/mausam.v73i1.5077
  72. 55. Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Syst Appl. 2021;167:114161. https://doi.org/10.1016/j.eswa.2020.114161
  73. 56. Xenakis A, Papastergiou G, Gerogiannis VC, Stamoulis G. Applying a convolutional neural network in an IoT robotic system for plant disease diagnosis. In: 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE; 2020:1-8. https://doi.org/10.1109/IISA50023.2020.9284356
  74. 57. Chen M, Challita U, Saad W, Yin C, Debbah M. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Commun Surv Tutor. 2019;21(4):3039-71. https://doi.org/10.1109/COMST.2019.2926625
  75. 58. Kavitha P, Kavitha K. Hybrid NOMA for latency minimization in wireless federated learning for 6G networks. Radioengineering. 2023;32(4):594. https://doi.org/10.13164/re.2023.0594
  76. 59. Farooq MS, Riaz S, Abid A, Abid K, Naeem MA. A survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access. 2019;7:156237-71. https://doi.org/10.1109/ACCESS.2019.2949703
  77. 60. Jiang W, Luo J. Graph neural network for traffic forecasting: A survey. Expert Syst Appl. 2022;207:117921.
  78. https://doi.org/10.1016/j.eswa.2022.117921
  79. 61. Dong G, Tang M, Wang Z, Gao J, Guo S, Cai L, et al. Graph neural networks in IoT: A survey. ACM Trans Sens Netw. 2023;19(2):1-50.
  80. https://doi.org/10.1145/3565973
  81. 62. Mahbub M, Hossain MM, Gazi MSA. Cloud-enabled IoT-based embedded system and software for intelligent indoor lighting, ventilation, early stage fire detection and prevention. Comput Netw. 2021;184:107673. https://doi.org/10.1016/j.comnet.2020.107673
  82. 63. Pramanik M, Khanna M, Singh M, Singh DK, Sudhishri S, Bhatia A, et al. Automation of soil moisture sensor-based basin irrigation system. Smart Agric Technol. 2022;2:100032. https://doi.org/10.1016/j.atech.2021.100032
  83. 64. Ahmad U, Alvino A, Marino S. Solar fertigation: A sustainable and smart IoT-based irrigation and fertilization system for efficient water and nutrient management. Agronomy. 2022;12(5):1012. https://doi.org/10.3390/agronomy12051012
  84. 65. Al-Tarawneh L, Mehyar A, Alasasaf SE, Al-Mariat M. Environmental tracking system using IoT based WSN: Smart agriculture. In: 2022 4th IEEE Middle East and North Africa Communications Conference (MENACOMM). IEEE; 2022:147-52. https://doi.org/10.1109/MENACOMM57252.2022.9998269
  85. 66. Khanna A, Kaur S. Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Comput Electron Agric. 2019;157:218-31. https://doi.org/10.1016/j.compag.2018.12.039
  86. 67. Ariesen-Verschuur N, Verdouw C, Tekinerdogan B. Digital twins in greenhouse horticulture: A review. Comput Electron Agric. 2022;199:107183. https://doi.org/10.1016/j.compag.2022.107183
  87. 68. Roostaei J, Wager YZ, Shi W, Dittrich T, Miller C, Gopalakrishnan K. IoT-based edge computing (IoTEC) for improved environmental monitoring. Sustain Comput Inform Syst. 2023;38:100870. https://doi.org/10.1016/j.suscom.2023.100870
  88. 69. Barbedo JGA, Koenigkan LV, Halfeld-Vieira BA, Costa RV, Nechet KL, Godoy CV, et al. Annotated plant pathology databases for image-based detection and recognition of diseases. IEEE Lat Am Trans. 2018;16(6):1749-57. https://doi.org/10.1109/TLA.2018.8444395
  89. 70. Hadipour M, Derakhshandeh JF, Shiran MA. An experimental setup of multi-intelligent control system (MICS) of water management using the Internet of Things (IoT). ISA Trans. 2020;96:309-26. https://doi.org/10.1016/j.isatra.2019.06.026
  90. 71. Yoon S, Kim J. Remote security management server for IoT devices. In: 2017 International Conference on Information and Communication Technology Convergence (ICTC). IEEE; 2017:1162-4. https://doi.org/10.1109/ICTC.2017.8190885
  91. 72. Sunhare P, Chowdhary RR, Chattopadhyay MK. Internet of things and data mining: An application oriented survey. J King Saud Univ Comput Inf Sci. 2022;34(6):3569-90. https://doi.org/10.1016/j.jksuci.2020.07.002
  92. 73. Afzaal H, Farooque AA, Schumann AW, Hussain N, McKenzie-Gopsill A, Esau T, et al. Detection of a potato disease (early blight) using artificial intelligence. Remote Sens. 2021;13(3):411. https://doi.org/10.3390/rs13030411
  93. 74. Chhillar A, Thakur S, Rana A. Survey of plant disease detection using image classification techniques. In: 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE; 2020:1339-44. https://doi.org/10.1109/ICRITO48877.2020.9197933
  94. 75. Sena Jr DG, Pinto FAC, Queiroz DM, Viana PA. Fall armyworm damaged maize plant identification using digital images. Biosyst Eng. 2003;85(4):449-54. https://doi.org/10.1016/S1537-5110(03)00098-9
  95. 76. Devaraj A, Rathan K, Jaahnavi S, Indira K. Identification of plant disease using image processing technique. In: 2019 International Conference on Communication and Signal Processing (ICCSP). IEEE; 2019:749-53. https://doi.org/10.1109/ICCSP.2019.8698056
  96. 77. Kundu N, Rani G, Dhaka VS, Gupta K, Nayak SC, Verma S, et al. IoT and interpretable machine learning based framework for disease prediction in pearl millet. Sensors. 2021;21(16):5386. https://doi.org/10.3390/s21165386
  97. 78. Miller SA, Beed FD, Harmon CL. Plant disease diagnostic capabilities and networks. Annu Rev Phytopathol. 2009;47:15-38.
  98. https://doi.org/10.1146/annurev-phyto-080508-081743
  99. 79. Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Front Plant Sci. 2016;7:1419.
  100. https://doi.org/10.3389/fpls.2016.01419
  101. 80. Parmar PJ, Shrimali M. Identification of fruit severity and disease detection using deep learning frameworks. Int J Intell Syst Appl Eng. 2024;12(12s):288-95.
  102. 81. Rao US, Swathi R, Sanjana V, Arpitha L, Chandrasekhar K, Naik PK. Deep learning precision farming: Grapes and mango leaf disease detection by transfer learning. Glob Transit Proc. 2021;2(2):535-44. https://doi.org/10.1016/j.gltp.2021.08.002
  103. 82. Abdullah NE, Rahim AA, Hashim H, Kamal MM. Classification of rubber tree leaf diseases using multilayer perceptron neural network. In: 2007 5th Student Conference on Research and Development. IEEE; 2007:1-6. https://doi.org/10.1109/SCORED.2007.4451369
  104. 83. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84-90. https://doi.org/10.1145/3065386
  105. 84. Türkoğlu M, Hanbay D. Plant disease and pest detection using deep learning-based features. Turk J Electr Eng Comput Sci. 2019;27(3):1636-51. https://doi.org/10.3906/elk-1809-181
  106. 85. Sharma V, Singh PK, Yadav KK, Lakhawat SS, Bhakar SR. Effects of chemical fertilizer scheduling on performance of okra (Abelmoschus esculentus L.) crop under soil moisture sensor based automated drip and conventional drip irrigation system. Int J Chem Stud. 2019;7(4):3189-91.
  107. 86. Pawar SE, Surana AV, Sharma P, Pujeri R. Fruit disease detection and classification using machine learning and deep learning techniques. Int J Intell Syst Appl Eng. 2024;12(4s):440-53.
  108. 87. Arya S, Singh R. A comparative study of CNN and AlexNet for detection of disease in potato and mango leaf. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE; 2019:1-6. https://doi.org/10.1109/ICICT46931.2019.8977648
  109. 88. Wongsila S, Chantrasri P, Sureephong P. Machine learning algorithm development for detection of mango infected by anthracnose disease. In: 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. IEEE; 2021:249-52. https://doi.org/10.1109/ECTIDAMTNCON51128.2021.9425737
  110. 89. Mia MR, Roy S, Das SK, Rahman MA. Mango leaf disease recognition using neural network and support vector machine. Iran J Comput Sci. 2020;3(3):185-93. https://doi.org/10.1007/s42044-020-00057-z
  111. 90. Wang H, Mou Q, Yue Y, Zhao H. Research on detection technology of various fruit disease spots based on mask R-CNN. In: 2020 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE; 2020:1083-7. https://doi.org/10.1109/ICMA49215.2020.9233575
  112. 91. Khattak A, Asghar MU, Batool U, Asghar MZ, Ullah H, Al-Rakhami M, et al. Automatic detection of citrus fruit and leaves diseases using deep neural network model. IEEE Access. 2021;9:112942-54. https://doi.org/10.1109/ACCESS.2021.3096895
  113. 92. Yan K, Song X, Yang J, Xiao J, Xu X, Guo J, et al. Citrus huanglongbing detection: A hyperspectral data-driven model integrating feature band selection with machine learning algorithms. Crop Prot. 2025;188:107008. https://doi.org/10.1016/j.cropro.2024.107008
  114. 93. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2009;22(10):1345-59.
  115. https://doi.org/10.1109/TKDE.2009.191
  116. 94. Selvaraj MG, Vergara A, Ruiz H, Safari N, Elayabalan S, Ocimati W, et al. AI-powered banana diseases and pest detection. Plant Methods. 2019;15:47. https://doi.org/10.1186/s13007-019-0475-z
  117. 95. Liao W, Ochoa D, Zhao Y, Rugel GMV, Philips W. Banana disease detection by fusion of close range hyperspectral image and high-resolution RGB image. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE; 2018:1744-7.
  118. https://doi.org/10.1109/IGARSS.2018.8519115
  119. 96. Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. Deep neural networks based recognition of plant diseases by leaf image classification. Comput Intell Neurosci. 2016;2016:3289801. https://doi.org/10.1155/2016/3289801
  120. 97. Banarase SJ, Shirbahadurkar SD. Papaya diseases detection using GLCM feature extraction and hyperparameter tuning of machine learning approach. In: Proceedings of Third International Conference on Sustainable Expert Systems (ICSES). Singapore: Springer; 2023:145-58. https://doi.org/10.1007/978-981-19-7874-6_12
  121. 98. Al Haque AF, Hafiz R, Hakim MA, Islam GR. A computer vision system for guava disease detection and recommend curative solution using deep learning approach. In: 2019 22nd International Conference on Computer and Information Technology (ICCIT). IEEE; 2019:1-6. https://doi.org/10.1109/ICCIT48885.2019.9038598
  122. 99. Ahmad J, Jan B, Farman H, Ahmad W, Ullah A. Disease detection in plum using convolutional neural network under true field conditions. Sensors. 2020;20(19):5569. https://doi.org/10.3390/s20195569
  123. 100. Ayaz M, Ammad-Uddin M, Sharif Z, Mansour A, Aggoune EHM. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access. 2019;7:129551-83. https://doi.org/10.1109/ACCESS.2019.2932609
  124. 101. Udutalapally V, Mohanty SP, Pallagani V, Khandelwal V. sCrop: A novel device for sustainable automatic disease prediction, crop selection and irrigation in Internet-of-Agro-Things for smart agriculture. IEEE Sens J. 2020;21(16):17525-38. https://doi.org/10.1109/JSEN.2020.3032438
  125. 102. Rajak P, Ganguly A, Adhikary S, Bhattacharya S. Internet of Things and smart sensors in agriculture: Scopes and challenges. J Agric Food Res. 2023;14:100776. https://doi.org/10.1016/j.jafr.2023.100776

Downloads

Download data is not yet available.