Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Endophytic seed cube technology for enhanced seed germination, crop establishment and soil microbial dynamics in ridge gourd (Luffa acutangula)

DOI
https://doi.org/10.14719/pst.9807
Submitted
3 June 2025
Published
31-07-2025
Versions

Abstract

Ridge gourd (Luffa acutangula), which is often called a nutritional powerhouse, is a widely cultivated and valued crop across the globe. The use of synthetic chemicals in agriculture poses serious risks to both environment and human health, urging the need for eco-friendly techniques. Thus, providing an optimum growth medium enriched with beneficial organisms can enhance seedling establishment, microbial interactions and plant health sustainably. Therefore, this study aims to investigate the potential of endophyte enriched seed cubes to improve seedling vigour, microbial activity and crop establishment in ridge gourd. The seed cubes were enriched with different endophytes viz., Bacillus subtilis, Bacillus licheniformis, Pseudomonas fluorescens, Pseudomonas putida, Trichoderma harzianum, Rhizobium japonicum and Bacillus megaterium each at 2 %, 4 % and 6 % concentrations. Among the endophytes, it was found that Rhizobium japonicum 6 % significantly enhanced seed germination (95 %), root length (15.2 cm), shoot length (18.7 cm), dry matter (14.8 g/100 seedlings), seedling vigour (3221 & 14.1) and microbial load (35, 47 & 23 cfu/g) over dry seeds under shadenet condition. Similarly, field evaluation also confirmed that R. japonicum 6 % improved seedling growth, biomass and chlorophyll content over control plants. In addition, the enhanced soil dehydrogenase (66 %) and phosphatase (46 %) activities favour soil microbiome improvement, organic matter enrichment and nutrient cycling which is ultimately essential for crop establishment. Thus, the findings of this study highlight the potential of Rhizobium japonicum 6 % enriched seed cubes as an eco-friendly alternative to enhance ridge gourd cultivation with reduced environmental hazards. Furthermore, the feasibility of this technology across various crops offers a promising solution for enhancing crop productivity, while maintaining environmental sustainability.

References

  1. 1. Shadrach FD, Kandasamy G, Neelakandan S, Lingaiah TB. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci Rep. 2023;13(1):14108. https://doi.org/10.1038/s41598-023-41120-6
  2. 2. Belemkar S, Sharma M, Ghode P, Shendge PN. Bioactive compounds of ridge gourd (Luffa acutangula (L.) Roxb.). Ref Ser Phytochem. 2021;403-15. https://doi.org/10.1007/978-3-030-57415-4_22
  3. 3. Statista. www.statista.com. 2025.
  4. 4. Ashitha A, Rakhimol K. Fate of the conventional fertilizers in environment. Controlled release fertilizers for sustainable agriculture: Elsevier. 2021;25-39. https://doi.org/10.1016/B978-0-12-819555-0.00002-9
  5. 5. Dubey A, Saiyam D, Kumar A, Khan ML, El Sabagh A. Nano-fertilizers for sustainable agriculture under limited abiotic conditions. Nanotechnology for Agriculture: Apple Academic Press. 2025;127-40. https://doi.org/10.1201/9781003622321-7
  6. 6. Hu M, Xue H, Wade AJ, Gao N, Qiu Z, Long Y, et al. Biofertilizer supplements allow nitrogen fertilizer reduction, maintain yields and reduce nitrogen losses to air and water in China paddy fields. Agric Ecosyst Environ. 2024;362:108850. https://doi.org/10.1016/j.agee.2023.108850
  7. 7. Bhatla SC, Lal MA, Kathpalia R, Bhatla SC. Plant mineral nutrition. Plant physiology, development and metabolism. 2018;37-81. https://doi.org/10.1007/978-981-13-2023-1_2
  8. 8. Zhu D, Xia Y, Liu D, Zhang Z, Zhang F, Wu M, et al. Optimized management stabilized crop yield and mitigated the risk of potassium loss across different rotations in the middle of Yangtze River basin in China. J Agric Res. 2024;16:101137. https://doi.org/10.1016/j.jafr.2024.101137
  9. 9. Sarkar S, Jaswal A, Singh A. Sources of inorganic nonmetallic contaminants (synthetic fertilizers, pesticides) in agricultural soil and their impacts on the adjacent ecosystems. Bioremed Emerg Contam Soils. 2024;135-61. https://doi.org/10.1016/B978-0-443-13993-2.00007-4
  10. 10. Zhou W, Li M, Achal V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg Contam. 2024;100410. https://doi.org/10.1016/j.emcon.2024.100410
  11. 11. Agarwal S, Gaurav A, Singh A. Phytotoxicity, accumulation and translocation of herbicide 2,4-D and its residues in crop plants. Environ Pollut. 2023;326:121484. https://doi.org/10.1016/j.envpol.2023.121484
  12. 12. Das S, Dash SS, Barman M, Mandal B. Synthesis, characterization and application of urea-formaldehyde slow-release fertilizer based on modified lignin. Sci Rep. 2022;12:2309. https://doi.org/10.1038/s41598-022-06322-3
  13. 13. Bakhtiari S, Hemmati F, Mirshekari B, Feizi M, Etesami H, Davarpanah S, et al. Smart fertilizers and their interactions with soil microbial communities: a promising approach for sustainable agriculture. Sci Total Environ. 2024;913:168797. https://doi.org/10.1016/j.scitotenv.2023.168797
  14. 14. Vanlauwe B, Hungria M, Kanampiu F, Giller KE. The role of legumes in the sustainable intensification of African smallholder agriculture: lessons learnt and challenges for the future. Agric Ecosyst Environ. 2019;284:106583. https://doi.org/10.1016/j.agee.2019.106583
  15. 15. Sundara B, Natarajan V, Hari K. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 2002;77(1):43-9. https://doi.org/10.1016/S0378-4290(02)00048-8
  16. 16. Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic. 2008;117(2):130-5. https://doi.org/10.1016/j.scienta.2008.03.014
  17. 17. Tholkappian P, Sudhagar R, Balachandar D. Impact of the application of biofertilizers on soil quality and yield of green gram under semiarid tropical conditions. Arch Agron Soil Sci. 2023;69(14):2683-99. https://doi.org/10.1080/03650340.2021.2019894
  18. 18. Tohidloo G, Maleki M, Alikhani HA. Biofertilizers impact on soil biological and chemical properties and Zea mays L. performance under water limitation. Sci Rep. 2023;13:4176. https://doi.org/10.1038/s41598-023-31212-5
  19. 19. Sharma D, Rathore P. Integration of soil microbes in sustainable agriculture: an approach for soil and plant health. Biocatal Agric Biotechnol. 2023;50:102720. https://doi.org/10.1016/j.bcab.2023.102720
  20. 20. Mishra J, Arora NK. Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. Environ Sustain. 2023;6:611-29. https://doi.org/10.1007/s42398-023-00283-6
  21. 21. Jabborova D, Annapurna K, Jabborov N, Gafforov Y, Fayzieva D, Kadirova D, et al. The impact of biofertilizers on soil microbial population, soil health and yield of mung bean (Vigna radiata L.) under sustainable agriculture. Arch Microbiol. 2023;205:318. https://doi.org/10.1007/s00203-023-03749-w
  22. 22. Raj A, Singh R, Khaliq A, Jha P, Saxena A. Role of phosphorus solubilizing microorganisms in enhancing soil fertility and crop productivity – a review. Pedosphere. 2023;33(5):571-86. https://doi.org/10.1016/S1002-0160(23)60405-6
  23. 23. Haque M, Biswas JC, Hossain MA, Islam MS. Phosphorus solubilizing bacteria (PSB): potential microbes to regulate bioavailable phosphorus in agricultural soils. Sustainability. 2023;15(4):3537. https://doi.org/10.3390/su15043537
  24. 24. Amujoyegbe BJ, Opabode JT, Olayinka A. Effect of organic and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays L.) and sorghum (Sorghum bicolor L.). Afr J Biotechnol. 2007;6(16):1869-73. https://doi.org/10.5897/AJB2007.000-2298
  25. 25. Bhaduri D, Purakayastha TJ, Bandyopadhyay KK. Status of microbial population and enzyme activities in a vertisol after 7 years of integrated nutrient management. J Environ Biol. 2014;35(1):145-50.
  26. 26. Prakash P, Arunkumar S, Venkatesan K, Balasubramanian TN. Long-term effects of bio-fertilizers and organic manures on soil properties and microbial population in rice-rice cropping system. Green Farming. 2016;7(2):354-8.
  27. 27. Rukmani R, Manjula R. Impact of biofertilizers on growth, yield and nutrient content of okra (Abelmoschus esculentus L.). Int J Curr Microbiol Appl Sci. 2018;7(2):392-9. https://doi.org/10.20546/ijcmas.2018.702.050
  28. 28. Viji MM, Ananthi T, Deepa R, Natarajan S. Influence of biofertilizers and chemical fertilizers on soil fertility and yield of spinach (Spinacia oleracea L.). Int J Curr Microbiol Appl Sci. 2020;9(5):375-82. https://doi.org/10.20546/ijcmas.2020.905.043
  29. 29. Sudhakar M, Ramesh K, Chandrasekaran B. Effect of integrated nutrient management on growth and yield of greengram (Vigna radiata L.) and blackgram (Vigna mungo L.) under rice fallow condition. Int J Curr Microbiol Appl Sci. 2017;6(10):2243-8. https://doi.org/10.20546/ijcmas.2017.610.266
  30. 30. Sahu PK, Brahmaprakash GP. Effect of biofertilizers on nutrient uptake and productivity of chickpea (Cicer arietinum L.) under rainfed conditions. J Environ Biol. 2016;37(2):301-6.
  31. 31. Singh D, Shukla A, Sharma P, Yadav RS. Effect of biofertilizers on growth and yield of lentil (Lens culinaris Medik.). Int J Curr Microbiol Appl Sci. 2020;9(8):3603-10. https://doi.org/10.20546/ijcmas.2020.908.410
  32. 32. Kavita M, Prasad D, Patel SR. Effect of integrated nutrient management on soil microbial population, yield and quality of coriander (Coriandrum sativum L.). Int J Curr Microbiol Appl Sci. 2018;7(5):1748-54. https://doi.org/10.20546/ijcmas.2018.705.206
  33. 33. Mandal K, Raju RAK, Pathak H, Purakayastha TJ. Soil carbon sequestration under different nutrient management practices in legume-based cropping systems in semi-arid tropics of India. J Environ Manage. 2014;132:103-10. https://doi.org/10.1016/j.jenvman.2013.11.011
  34. 34. Selvakumar G, Panneerselvam P, Ganeshamurthy AN. Bacterial mediated alleviation of abiotic stress in crops. In: Giri B, Prasad R, Wu QS, Varma A, editors. Microorganisms in sustainable agriculture and biotechnology. New York: Springer; 2012:205-26. https://doi.org/10.1007/978-3-642-33350-7_11
  35. 35. Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW. Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merr.) dependent on N2 fixation or nitrate supply. Plant Biol. 2010;12(1):60-9. https://doi.org/10.1111/j.1438-8677.2009.00213.x
  36. 36. Bukhari NA, Aldehaish HA, Iqbal M, Muneer MA. Effect of arbuscular mycorrhizal fungi on growth and nutrient uptake of wheat (Triticum aestivum L.) grown in different soil textures. Saudi J Biol Sci. 2020;27(6):1515-20. https://doi.org/10.1016/j.sjbs.2020.03.021
  37. 37. Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney RK. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea (Cicer arietinum L.). 3 Biotech. 2016;6:127. https://doi.org/10.1007/s13205-016-0433-1
  38. 38. Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol. 2016;92(8):112. https://doi.org/10.1093/femsec/fiw112
  39. 39. Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI. Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J. 2013;2013:272409. https://doi.org/10.1155/2013/272409
  40. 40. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2:587. https://doi.org/10.1186/2193-1801-2-587
  41. 41. Pradhan M, Mohapatra PKD, Dash AK. Effect of phosphate solubilizing bacteria on growth and phosphorus content of rice (Oryza sativa L.) and black gram (Vigna mungo L.) under pot culture. Int J Curr Microbiol Appl Sci. 2013;2(11):55-64.
  42. 42. Khan MS, Zaidi A, Wani PA. Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev. 2007;27:29-43. https://doi.org/10.1051/agro:2006011
  43. 43. Meena VS, Maurya BR, Verma JP, Meena RS, Meena SK. Potassium-solubilizing rhizobacteria (KSR): isolation, identification, and K-release kinetics from waste mica. Ecol Eng. 2016;81:340-7. https://doi.org/10.1016/j.ecoleng.2015.04.055
  44. 44. Parmar P, Sindhu SS. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res. 2013;3(1):25-31.
  45. 45. Singh RK, Pandey P, Sharma L, Singh AK, Kumar S, Tiwari SC. Isolation and characterization of potassium solubilizing bacteria from Indo-Gangetic plains of India for enhancing crop productivity. J Soil Sci Plant Nutr. 2010;10(1):89-105.
  46. 46. Basak BB, Biswas DR. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil. 2009;317:235-55. https://doi.org/10.1007/s11104-008-9809-4
  47. 47. Verma JP, Yadav J, Tiwari KN, Kumar A. Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res. 2013;8(5):163-76. https://doi.org/10.3923/ijar.2013.163.176
  48. 48. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 2005;125(1-2):155-66. https://doi.org/10.1016/j.geoderma.2004.07.003
  49. 49. Singh G, Kapoor KK, Mukerji KG. Impact of inoculation of phosphate solubilizing microorganisms and Vesicular-arbuscular mycorrhizal fungus on the yield and nutrient uptake of mungbean (Vigna radiata L.). Mycorrhiza. 2000;10(6):337-43. https://doi.org/10.1007/s005720000080
  50. 50. Rana A, Joshi M, Prasanna R, Shivay YS, Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol. 2012;50:118-26. https://doi.org/10.1016/j.ejsobi.2011.12.006

Downloads

Download data is not yet available.