Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 13 No. 1 (2026)

Evaluation of hydrogels for plant preservation, conservation and growth

DOI
https://doi.org/10.14719/pst.9812
Submitted
6 June 2025
Published
30-01-2026 — Updated on 05-02-2026
Versions

Abstract

Climate change, water scarcity, salinity, extreme temperatures, urbanization and the degradation of soils used for cultivating plants and crops pose multiple challenges to agricultural lands, the most significant being water scarcity and soil degradation. Faced with this situation, alternatives are being sought to enable the rational use of water. Among the sustainable alternatives to solve this problem is the use of hydrogels, which improve water retention, act as gradual nutrient releasers that enhance nutrient absorption and availability and promote crop growth and yield. They help alleviate water stress and provide a viable solution to water scarcity in plants and crops. This review provides a comprehensive, critical and objective overview of the use of hydrogels in sustainable agriculture as an innovative solution to climate change, soil degradation and water scarcity. It also highlights the benefits of hydrogels in water retention, nutrient release, plant and crop performance and hydraulic stress mitigation, adopting an ecological perspective. Furthermore, it summarizes the most recent advances research reported in the Elsevier and Google Scholar databases, emphasizing the most relevant findings related to the application of hydrogels in sustainable agriculture.

References

  1. 1. Ali S, Anjum MA, Nawaz A, Naz S, Hussain S, Ejaz S, et al. Effect of pre-storage ascorbic acid and Aloe vera gel coating application on enzymatic browning and quality of lotus root slices. J Food Biochem. 2020;44(3):1–12. https://doi.org/10.1111/jfbc.13136
  2. 2. Ma Y, Dias MC, Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci. 2020;11:591911. https://doi.org/10.3389/fpls.2020.591911
  3. 3. Laredo-Alcalá EI, Salinas-Gutiérrez A, Chávez-Martínez ML, Meléndez-Rentería NP, Barrera-Martínez CL, Salinas-Jasso TA, et al. Efecto de hidrogeles biodegradables sobre la retención de humedad y la germinación de alfalfa. Ecosist Recur Agropecu. 2023;10(2):1–11. https://doi.org/10.19136/era.a10n2.3133
  4. 4. Ortega-Torres AE, Flores Tejeida LB, Guevara-González RG, Rico-García E, Soto-Zarazúa GM. Hidrogel acrilato de potasio como sustrato en cultivo de pepino y jitomate. Rev Mex Cienc Agric. 2020;11(6):447–55. https://doi.org/10.29312/remexca.v11i6.2222
  5. 5. Food and Agriculture Organization of the United Nations. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Sci Total Environ. 2023;846:157303.
  6. 6. Sarango Y, Chenche O. Efecto de bioestimulantes foliares en la tolerancia al estrés abiótico en cultivos de Raphanus sativus. Reincisol. 2024;3(6):4420–42. https://doi.org/10.59282/reincisol.V3(6)4420-4442
  7. 7. Reta Reyna MN, Farías Cepeda L, Ovando Medina VM, Serrato Villegas LE. Aplicación de hidrogeles en la agricultura. Cienciacierta. 2025;21(82):37–48.
  8. 8. Ehtesham A, Taghipour S, Siahmansour S. Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances quality of table grape (Vitis vinifera L. cv. Yaghouti) during postharvest period. Food Chem. 2021;347:129012. https://doi.org/10.1016/j.foodchem.2021.129012
  9. 9. Rivera-Solís LL, Benavides-Mendoza A, Robledo-Olivo A, González-Morales S. La salud del suelo y el uso de bioestimulantes. Agraria. 2020;20(3):46. https://doi.org/10.59741/agraria.v20i3.46
  10. 10. Yamini M, Prasad CH. Hydrogels: The three-dimensional networks: A review. Int J Curr Pharm Res. 2021;13(1):1–8. https://doi.org/10.22159/ijcpr.2021v13i1.40823
  11. 11. Sandoval-Yañez C, Escobar L, Amador CA. The advantages of polymeric hydrogels in calcineurin inhibitor delivery. Processes. 2020;8(11):1331. https://doi.org/10.3390/pr8111331
  12. 12. Sheergujri DA, Khanday MA, Noor A, Adnan M, Arif I, Raza SN, et al. Biopolymer gels as smart drug delivery and theranostic systems. J Mater Chem B. 2025. https://doi.org/10.1039/D4TB02068E
  13. 13. Saini A, Malve S. Impact of hydrogel on agriculture – A review. Ecol Environ Conserv. 2023;29:36–47. https://doi.org/10.53550/EEC.2023.v29i01s.007
  14. 14. Ju JH, Yoon YH, Ju SY. Influence of substrates and hydrogels on spearmint (Mentha spicata) growth and flowering in a rooftop garden. HortScience. 2021;56(6):1–5. https://doi.org/10.21273/HORTSCI15540-20
  15. 15. Tomadoni B, Salcedo MF, Mansilla AY, Casalongué CA, Alvarez VA. Macroporous alginate-based hydrogels to control soil substrate moisture: Effect on lettuce plants under drought stress. Eur Polym J. 2020;137:109953. https://doi.org/10.1016/j.eurpolymj.2020.109953
  16. 16. Global Growth Insights. Hydrogel market size and insights report [2025–2033]. 2025.
  17. 17. Grand View Research. Agriculture–hydrogel market statistics, 2024–2030. 2025.
  18. 18. Agbna GHD, Zaidi SJ. Hydrogel performance in boosting plant resilience to water stress—A review. Gels. 2025;11(4):276. https://doi.org/10.3390/gels11040276
  19. 19. Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels. 2017;3(1):6. https://doi.org/10.3390/gels3010006
  20. 20. Sandoval-Yañez C, Escobar L, Amador CA. The advantages of polymeric hydrogels in calcineurin inhibitor delivery. Processes. 2020;8(11):1–18. https://doi.org/10.3390/pr8111331
  21. 21. Batool N, Sarfraz RM, Mahmood A, Rehman U, Zaman M, Akbar S, et al. Development and evaluation of cellulose derivative and pectin based swellable pH responsive hydrogel network for controlled delivery of cytarabine. Gels. 2023;9(1):60. https://doi.org/10.3390/gels9010060
  22. 22. Wang H, Zhang L, Zhang Y, et al. Advances in the application of natural/synthetic hybrid hydrogels in tissue engineering and delivery systems: A comprehensive review. Int J Pharm. 2025;672:125323. https://doi.org/10.1016/j.ijpharm.2025.125323
  23. 23. Zhang Y, Wu BM. Current advances in stimuli-responsive hydrogels as smart drug delivery carriers. Gels. 2023;9(10):838. https://doi.org/10.3390/gels9100838
  24. 24. Ko SW, Lee JY, Lee J, Son BC, Jang SR, Aguilar LE, et al. Analysis of drug release behavior utilizing the swelling characteristics of cellulosic nanofibers. Polymers. 2019;11(9):1376. https://doi.org/10.3390/polym11091376
  25. 25. Ali K, Asad Z, Agbna GHD, Saud A, Khan A, Zaidi SJ. Progress and innovations in hydrogels for sustainable agriculture. Agronomy. 2024;14(12):2815. https://doi.org/10.3390/agronomy14122815
  26. 26. Rehman A, Ahmad R, Safdar M. Effect of hydrogel on the performance of aerobic rice sown under different techniques. Plant Soil Environ. 2011;57(7):321–5. https://doi.org/10.17221/81/2011-PSE
  27. 27. Reddy K. How natural hydrogels are transforming agriculture. Terracon Ecotech. 2025.
  28. 28. Agbna GHD, Zaidi SJ. Hydrogel performance in boosting plant resilience to water stress—A review. Gels. 2025;11(4):276. https://doi.org/10.3390/gels11040276
  29. 29. Zhang Y, Wu BM. Current advances in stimuli-responsive hydrogels as smart drug delivery carriers. Gels. 2023;3(1):6. https://doi.org/10.3390/gels3010006
  30. 30. Vedovello P, Sanches LV, da Silva Teodoro G, Majaron VF, Bortoletto-Santos R, Ribeiro C, et al. An overview of polymeric hydrogel applications for sustainable agriculture. Agriculture. 2024;14(6):840. https://doi.org/10.3390/agriculture14060840
  31. 31. Park J, Guan W, Lei C, Yu G. Self-irrigation and slow release fertilizer hydrogels for sustainable agriculture. ACS Mater Lett. 2024;6(8):3471–7. https://doi.org/10.1021/acsmaterialslett.4c01120
  32. 32. Koushal S, Vishnoi M, Rachitha PJ, Vishnoi V, Premakumar, Singh KC. Hydrogels as a key solution for sustainable agriculture: Exploring water retention and soil improvement. Int J Res Agron. 2025;8(Suppl 8):415–23. https://doi.org/10.33545/2618060X.2025.v8.i8Sf.3604
  33. 33. Abdul Sattar OD, Khalid RM, Yusoff SFM. Eco-friendly natural rubber-based hydrogel loaded with nano-fertilizer as soil conditioner and improved plant growth. Int J Biol Macromol. 2024;280(Pt 1):135555. https://doi.org/10.1016/j.ijbiomac.2024.135555
  34. 34. Ali K, Asad Z, Agbna GHD, Saud A, Khan A, Zaidi SJ. Progress and innovations in hydrogels for sustainable agriculture. Agronomy. 2024;14(12):2815. https://doi.org/10.3390/agronomy14122815
  35. 35. Kaur P, Agrawal R, Pfeffer FM, et al. Hydrogels in agriculture: Prospects and challenges. J Polym Environ. 2023;31:3701–18. https://doi.org/10.1007/s10924-02302859-1
  36. 36. Maksimova YG, Shchetko VA. Polymer hydrogels in agriculture. Agric Biol. 2023;58(1):23–42. https://doi.org/10.15389/agrobiology.2023.1.23eng
  37. 37. García A, Ayala-Aponte A, Sánchez-Tamayo M. Effect of Aloe vera and sodium alginate edible coatings on postharvest quality of strawberry. Rev UDC Act Div Cient. 2019;22(2). https://doi.org/10.31910/rudca.v22.n2.2019.1320
  38. 38. Ehtesham A, Taghipour S, Siahmansour S. Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances quality of table grape (Vitis vinifera L. cv. Yaghouti) during postharvest period. Food Chem. 2021;347:129012. https://doi.org/10.1016/j.foodchem.2021.129012
  39. 39. Rivera-Solís LL, Benavides-Mendoza A, Robledo-Olivo A, González-Morales S. La salud del suelo y el uso de bioestimulantes. Agraria. 2020;20(3):46. https://doi.org/10.59741/agraria.v20i3.46
  40. 40. Vedovello P, Sanches LV, da Silva Teodoro G, Majaron VF, Bortoletto-Santos R, Ribeiro C, et al. An overview of polymeric hydrogel applications for sustainable agriculture. Agriculture. 2024;14(6):840. https://doi.org/10.3390/agriculture14060840
  41. 41. Oladosu Y, Rafii MY, Arolu F, Chukwu SC, Salisu MA, Fagbohun IK, et al. Superabsorbent polymer hydrogels for sustainable agriculture: A review. Horticulturae. 2022;8(7):605. https://doi.org/10.3390/horticulturae8070605
  42. 42. Muhammad N, Kader MA, Al Solaimani SG, Abd El Wahed MH, Abohassan RA, Charles ME. A review of impacts of hydrogels on soil water conservation in dryland agriculture. Farming Syst. 2025;3:100166. https://doi.org/10.1016/j.farsys.2025.100166
  43. 43. Abobatta W. Impact of hydrogel polymer in agricultural sector. Adv Agr Environ Sci. 2018;1(2):59–64. https://doi.org/10.30881/aaeoa.00011
  44. 44. Mandal M, Singh Lodhi R, Chourasia S, Das S, Das P. A review on sustainable slow-release N, P, K fertilizer hydrogels for smart agriculture. ChemPlusChem. 2025;90(3):e202400643. https://doi.org/10.1002/cplu.202400643
  45. 45. Agbna GHD, Zaidi SJ. Hydrogel performance in boosting plant resilience to water stress—A review. Gels. 2025;11(4):276. https://doi.org/10.3390/gels11040276
  46. 46. Marques PAA, Mendonça FC, Marques TA, Silva LPRP, Tiritan CST, Villa e Vila V, et al. Hydrogel polymer as a sustainable input for mitigating nutrient leaching and promoting plant growth in sugarcane crops. Acta Sci Agron. 2025;47:e68642. https://doi.org/10.4025/actasciagron.v47i1.68642
  47. 47. Estrada Guerrero RF, Lemus Torres D, Mendoza Anaya D, Rodríguez Lugo V. Hidrogeles biopoliméricos potencialmente aplicables en agricultura. Rev Iberoam Polímeros. 2010;12(2):76–87.
  48. 48. Vundavalli R, Vundavalli S, Nakka M, Rao DS. Biodegradable nano-hydrogels in agricultural farming—Alternative source for water resources. Procedia Mater Sci. 2015;10:548–54. https://doi.org/10.1016/j.mspro.2015.06.005
  49. 49. Pedroza Sandoval A, Yáñez Chávez LG, Sánchez Cohen I, Samaniego Gaxiola JA, Trejo Calzada R. Hydrogel, biocompost and its effect on photosynthetic activity and production of forage maize (Zea mays L.) plants. Acta Agron. 2017;66(1):63–8. https://doi.org/10.15446/acag.v66n1.50868
  50. 50. Elbarbary AM, Ghobashy MM. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation. Radiochim Acta. 2017;105(10):865–76. https://doi.org/10.1515/ract-2016-2679
  51. 51. Luan LQ, Xo DH. Preparation of oligoalginate immobilized hydrogel by radiation and its application for hydroponic culture. Radioisotopes. 2017;66(5):171–9. https://doi.org/10.3769/radioisotopes.66.171
  52. 52. López Velázquez JC. Desarrollo de hidrogeles biodegradables como acarreadores de inulina para el control de la infección de Phytophthora capsici en chile. 2018.
  53. 53. García MJ, Hernández Gonzalo R, Estévez López M. Extracto de Aloe vera L. en la adaptación de vitroplantas de plátano. Avances. 2020;22(1):1–12.
  54. 54. Melo RAC, Jorge MHA, Bortolin A, Boiteux LS, Ribeiro C, Marconcini JM. Growth of tomato seedlings in substrates containing a nanocomposite hydrogel with calcium montmorillonite (NC-MMT). Hortic Bras. 2019;37(2):199–203.
  55. https://doi.org/10.1590/s0102-053620190210
  56. 55. Hendrawan H, Khoerunnisa F, Sonjaya Y, Putri AD. Poly(vinyl alcohol)/glutaraldehyde/Premna oblongifolia Merr extract hydrogel for controlled-release and water absorption application. IOP Conf Ser Mater Sci Eng. 2019;509:012048.
  57. https://doi.org/10.1088/1757-899X/509/1/012048
  58. 56. Aydınoğlu D, Karaca N, Ceylan Ö. Natural carrageenan/psyllium composite hydrogels embedded montmorillonite and investigation of their use in agricultural water management. J Polym Environ. 2020;29(3):785–98. https://doi.org/10.1007/s10924-020-01914-5
  59. 57. Karunarathna MHJS, Bailey KM, Ash BL, Matson PG, Wildschutte H, Davis TW, et al. Nutrient capture from aqueous waste and photocontrolled fertilizer delivery to tomato plants using Fe(III)-polysaccharide hydrogels. ACS Omega. 2020;5(36):23009–20. https://doi.org/10.1021/acsomega.0c02694
  60. 58. Zhu J, Song X, Tan WK, Wen Y, Gao Z, Ong CN, et al. Chemical modification of biomass okara using poly(acrylic acid) through free radical graft polymerization. J Agric Food Chem. 2020;68(46):13241–6. https://doi.org/10.1021/acs.jafc.0c01818
  61. 59. Álvarez-Benaute L, Valverde-Rodriguez A, Briceño-Yen H. El uso de hidrogel reduce el estrés hídrico y mejora el rendimiento en el cultivo de maíz morado. Manglar. 2023;20(4):325–31. https://doi.org/10.57188/manglar.2023.037
  62. 60. Monar Haro CA, Vásconez Galarza GA. Uso de hidrogel para la retención del agua en suelos áridos. 2024.
  63. 61. Park J, Guan W, Lei C, Yu G. Self-irrigation and slow-release fertilizer hydrogels for sustainable agriculture. ACS Mater Lett. 2024;6(8):3471–7. https://doi.org/10.1021/acsmaterialslett.4c01120
  64. 62. Luligo Montealegre E, Prado Alzate S, Serna Cock L. Patente para hidrogel a base de sábila que mejora la retención de agua en suelos agrícolas. Agencia Noticias UNAL. 2023.
  65. 63. Agbna GHD, Zaidi SJ. Hydrogel performance in boosting plant resilience to water stress—A review. Gels. 2025;11(4):276. https://doi.org/10.3390/gels11040276
  66. 64. Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, et al. Translational applications of hydrogels. Chem Rev. 2021;121(18):11385–457. https://doi.org/10.1021/acs.chemrev.0c01177
  67. 65. Vellan M, Kannan A. Hydrogels in agriculture: Enhancing crop resilience and efficiency. In: Advances in Agricultural Sciences. 2024. p. 95–130.
  68. 66. Abbas H, Qamer S, Khan MN, Ullah R, Ali A, Iqbal R. Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. Sci Total Environ. 2022;846:157303.
  69. 67. Silva Neto G, Lima PF, da Silva RS, Oliveira RA, Gonçalves LRB. Progress and innovations in hydrogels for sustainable agriculture. Agronomy. 2022;12(12):2815.

Downloads

Download data is not yet available.