Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Antioxidant activity and vasorelaxant effect of Marrubium multibracteatum via receptor-activated calcium channels and nitric oxide pathways in rats

DOI
https://doi.org/10.14719/pst.9860
Submitted
5 June 2025
Published
31-12-2025

Abstract

According to several studies, antihypertensive drugs have side effects on human health. Therefore, natural products are also being investigated as alternatives to these drugs. For this reason, the present study aimed to examine the vasorelaxant properties of Marrubium multibracteatum aqueous extract (MMAE) on isolated rat aortic rings. The antioxidant potential of MMAE was also evaluated. The vasorelaxant activity of MMAE was assessed on aortic rings precontracted with epinephrine (EP, 10  μM) and potassium chloride (KCl, 80  mM). The antioxidant potential of MMAE was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. In addition, the extract underwent phytochemical screening. The results showed that cumulative concentrations of MMAE (0.75 – 1.50  mg/mL) induced a vasorelaxant effect on epinephrine-precontracted aortic rings via the nitric oxide (NO) pathway and inhibited extracellular Ca2+ entry through receptor-operated calcium channels (ROCCs). However, the same concentrations of MMAE exhibited only minimal vasorelaxant effects on KCl (80 mM)-precontracted aortic rings. In contrast, MMAE demonstrated significant antioxidant activity. These findings suggest that MMAE exhibits both potent vasorelaxant and antioxidant properties, likely due to its phytochemical composition, particularly the presence of polyphenols, flavonoids and tannins. Therefore, this extract may represent a promising natural alternative to certain synthetic antihypertensive drugs.

References

  1. 1. Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 2021;18(11):785–802. https://doi.org/10.1038/s41569-021-00559-8
  2. 2. Ramdani S, Yeznasni A, Haddiya I. Risk factors and social determinants of hypertension in women: data from Eastern Morocco. J Hypertens. 2025;43(Suppl 1):270–1. https://doi.org/10.1097/01.hjh.0001118016.39444.fe
  3. 3. Kario K, Okura A, Hoshide S, et al. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens Res. 2024;47:1099–102. https://doi.org/10.1038/s41440-024-01622-w
  4. 4. Giles TD, Sander GE, Nossaman BD, Kadowitz PJ. Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial-derived hyperpolarizing factors and prostaglandins. J Clin Hypertens (Greenwich). 2012;14(4):198–205. https://doi.org/10.1111/j.1751-7176.2012.00606.x
  5. 5. Cao YX, Zhang W, He JY, He LC, Xu CB. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Vasc Pharmacol. 2006;45(3):171–6. https://doi.org/10.1016/j.vph.2006.05.004
  6. 6. Bouadid I, Amssayef A, Eddouks M. Study of the antihypertensive effect of Laurus nobilis in rats. Cardiovasc Hematol Agents Med Chem. 2023;21(1):42–54. https://doi.org/10.2174/1871525720666220512154041
  7. 7. Amssayef A, Ajebli M, Eddouks M. Aqueous extract of oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin Exp Hypertens. 2021;43(1):49–55. https://doi.org/10.1080/10641963.2020.1797087
  8. 8. Aćimović M, Jeremić K, Salaj N, Gavarić N, Kiprovski B, Sikora V, Zeremski T. Marrubium vulgare L.: A phytochemical and pharmacological overview. Molecules. 2020;25(12):2898. https://doi.org/10.3390/molecules25122898
  9. 9. Rigano D, Arnold NA, Bruno M, Formisano C, Grassia A, Piacente S, et al. Phenolic compounds of Marrubium globosum ssp. libanoticum from Lebanon. Biochem Syst Ecol. 2006;34(3):256–8. https://doi.org/10.1016/j.bse.2005.10.006
  10. 10. Azzane A, Azzaoui B, Akdad M, Bouadid I, Eddouks M. Effect of Calamintha officinalis on vascular contractility and angiotensin converting Enzyme-2. Cardiovasc Hematol Agents Med Chem. 2022;20(3):219–36. https://doi.org/10.2174/1871525720666220302125242
  11. 11. Ma J, Li Y, Yang X, Zhang X, Zhang W. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8:168. https://doi.org/10.1038/s41392-023-01430-7
  12. 12. Ajebli M, Eddouks M. Pharmacological and phytochemical study of Mentha suaveolens Ehrh in normal and streptozotocin-induced diabetic rats. Nat Prod J. 2018;8(3):213–27. https://doi.org/10.2174/2210315508666180327120434
  13. 13. Bouhlali EDT, Alem C, Zegzouti YF. Antioxidant and anti-hemolytic activities of phenolic constituents of six Moroccan date fruit (Phoenix dactylifera L.) syrups. Biotechnol Indian J. 2016;12(1):45–52. https://doi.org/10.17957/jgiass/3.2-3.709
  14. 14. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003;81(3):321–6. https://doi.org/10.1016/s0308-8146(02)00423-5
  15. 15. Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric. 1978;29(9):788–94. https://doi.org/10.1002/jsfa.2740290908
  16. 16. Louli V, Ragoussis N, Magoulas K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol. 2004;92(2):201–8. https://doi.org/10.1016/j.biortech.2003.06.002
  17. 17. Cottiglia F, Loy G, Garau D, Floris C, Caus M, Pompei R, et al. Antimicrobial evaluation of coumarins and flavonoids from the stems of Daphne gnidium L. Phytomedicine. 2001;8(4):302–5. https://doi.org/10.1078/0944-7113-00036
  18. 18. Hoe SZ, Lee CN, Mok SL, Kamaruddin MY, Lam SK. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels. Clinics. 2011;66:143–50. https://doi.org/10.1590/S1807-59322011000100025
  19. 19. Meisheri KD, Hwang OK, van Breemen C. Evidence for two separate Ca2+ pathways in smooth muscle plasmalemma. J Membr Biol. 1981;59:19–25. https://doi.org/10.1007/bf01870817
  20. 20. Yamamoto H, van Breemen C. Ca2+ compartments in saponin-skinned cultured vascular smooth muscle cells. J Gen Physiol. 1986;87(3):369–89. https://doi.org/10.1085/jgp.87.3.369
  21. 21. Chaumais MC, Macari EA, Sitbon O. Calcium-channel blockers in pulmonary arterial hypertension. In: Humbert M, Evgenov O, Stasch JP, editors. Pharmacotherapy of pulmonary hypertension. Berlin (Germany): Springer; 2013. p.161–75. https://doi.org/10.1007/978-3-642-38664-0_7
  22. 22. Lin Q, Zhao G, Fang X, Peng X, Tang H, Wang H, et al. IP₃ receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight. 2016;1(17):e89402. https://doi.org/10.1172/jci.insight.89402
  23. 23. Bouadid I, Qabouche A, Eddouks M. Antihypertensive and ACE-2 inhibitory effects of Daphne gnidium in rats. Cardiovasc Hematol Agents Med Chem. 2024;22(4):432–40. https://doi.org/10.2174/0118715257251651231212045407
  24. 24. Taira N. Nifedipine: a novel vasodilator. Drugs. 2006;66(Suppl 1):1–7. https://doi.org/10.2165/00003495-200666991-00002
  25. 25. Bardai SE, Lyoussi B, Wibo M, Morel N. Pharmacological evidence of hypotensive activity of Marrubium vulgare and Foeniculum vulgare in spontaneously hypertensive rats. Clin Exp Hypertens. 2001;23(4):329–43. https://doi.org/10.1081/CEH-100102671
  26. 26. El Bardai S, Wibo M, Hamaide MC, Lyoussi B, Quetin-Leclercq J, Morel N. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. Br J Pharmacol. 2003;140(7):1211–6. https://doi.org/10.1038/sj.bjp.0705561
  27. 27. Jorge VG, Melina HG, Joaquín HC, Patricia CE, Emmanuel RM, Marisa EC, et al. Vasorelaxant effect of ethanolic extracts from Marrubium vulgare: Mexican medicinal plant as potential source for bioactive molecules isolation. Indo Glob J Pharm Sci. 2013;3(1):1–7.
  28. 28. El Bardai S, Lyoussi B, Wibo M, Morel N. Comparative study of the antihypertensive activity of Marrubium vulgare and of the dihydropyridine calcium antagonist amlodipine in spontaneously hypertensive rat. Clin Exp Hypertens. 2004;26(6):465–74. https://doi.org/10.1081/CEH-200031818
  29. 29. VanderJagt TJ, Ghattas R, VanderJagt DJ, Crossey M, Glew RH. Comparison of the total antioxidant content of 30 widely used medicinal plants of New Mexico. Life Sci. 2002;70(9):1035–40. https://doi.org/10.1007/978-3-642-38664-0_7
  30. 30. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37. https://doi.org/10.1093/eurheartj/ehr304
  31. 31. Pinheiro LC, Tanus-Santos JE, Castro MM. The potential of stimulating nitric oxide formation in the treatment of hypertension. Expert Opin Ther Targets. 2017;21(5):543–56. https://doi.org/10.1080/14728222.2017.1310840
  32. 32. Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, et al. Targeting nitric oxide with natural derived compounds as a therapeutic strategy in vascular diseases. Oxid Med Cell Longev. 2016;2016:7364138. https://doi.org/10.1155/2016/7364138

Downloads

Download data is not yet available.