Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

GC-MS profiling and activity of Diospyros melanoxylon leaves against nosocomial pathogens

DOI
https://doi.org/10.14719/pst.9871
Submitted
6 June 2025
Published
13-11-2025 — Updated on 27-11-2025
Versions

Abstract

The rising incidence of microbial resistance and disorders associated with oxidative stress has propelled the quest for natural substances with therapeutic efficacy. The plant Diospyros melanoxylon (Roxb) known as tendu in Hindi & kendu in Odia, is indigenous to India (Odisha, Chhattisgarh, Jharkhand), Sri Lanka, Bangladesh and is a member of the Ebenaceae family. The current study is a chemometric analysis and antimicrobial study of D. melanoxylon leaf extract against some microorganisms responsible for hospital-acquired infections. Gas chromatography and Mass Spectroscopy (GC-MS) analysis was done to identify the phytocompounds present in the plant. The content of tannin, flavonoids and phenolics in D. melanoxylon was established using a colorimetric assay. Antioxidant activity was studied by assessing free radical scavenging assays. The in vitro antimicrobial assay was conducted using viable cell count and the turbidimetric method. The GC-MS analysis confirms the presence of various phytoconstituents like Epoxylanistan-11-ol, Phenol,2,4-bis(1,1-dimethylethyl)-,Ur-12-2n-24-oic acid, α-amyrin & trimethylsilyl with α-amyrin being found to major constituent responsible for the pharmacological properties. The result indicated that ethyl acetate extract of D. melanoxylon leaves exhibited remarkable phenolic, flavonoid and tannin content. The plant extract has been effective against Gram-negative bacteria that cause hospital-acquired infections following liver transplantation, such as Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and Pseudomonas aeruginosa. These findings may be crucial in the development of new plant antibiotics against bacterial infections that predominantly happen following hospitalisation after liver transplantation. Further research should explore its mechanism of action, isolation and possible application in combination therapy.

References

  1. 1. Huy TXN. Overcoming Klebsiella pneumoniae antibiotic resistance: new insights into mechanisms and drug discovery. Beni-Suef Univ J Basic Appl Sci. 2024;13(1):13. https://doi.org/10.1186/s43088-024-00470-4
  2. 2. Cook GD, Stasulli NM. Employing synthetic biology to expand antibiotic discovery. SLAS Technol. 2024;29(2):100120. https://doi.org/10.1016/j.slast.2024.100120
  3. 3. Aggarwal R, Mahajan P, Pandiya S, Bajaj A, Verma SK, Yadav P, et al. Antibiotic resistance: a global crisis, problems and solutions. Crit Rev Microbiol. 2024;50(5):896-921. https://doi.org/10.1080/1040841X.2024.2313024
  4. 4. Mularoni A, Cona A, Campanella M, Barbera F, Medaglia AA, Cervo A, et al. Donor-derived carbapenem-resistant gram-negative bacterial infections in solid organ transplant recipients: active surveillance enhances recipient safety. Am J Transplant. 2024;24(6):1046-56. https://doi.org/10.1016/j.ajt.2024.02.005
  5. 5. Bonazzetti C, Rinaldi M, Cosentino F, Gatti M, Freire MP, Mularoni A, et al. Survey on the approach to antibiotic prophylaxis in liver and kidney transplant recipients colonized with “difficult to treat” gram-negative bacteria. Transpl Infect Dis. 2024;26(2):e14238. https://doi.org/10.1111/tid.14238
  6. 6. Yang W, Li J, Yao Z, Li M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: current development and future prospects. Sci Total Environ. 2024;926:171757. https://doi.org/10.1016/j.scitotenv.2024.171757
  7. 7. Abdulrahman MD. Antioxidant, alpha glucosidase and antibacterial evaluation of Syzygium mytifolium (Roxb.) Walp. Plant Sci Today. 2021;8(2):410-15. https://doi.org/10.14719/pst.2021.8.2.1113
  8. 8. World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance, to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024.
  9. 9. Singh R, Prasad KK, Siddiqui MW, Prasad K. Medicinal plants in preventive and curative roles for various ailments. In: Plant Secondary Metabolites. Vol. 1. Apple Academic Press; 2017:83-120. https://doi.org/10.1201/9781315366326-11
  10. 10. Ferdes M. Antimicrobial compounds from plants. In: Fighting Antimicrobial Resistance. Zagreb: IAPC-OBP; 2018:243-71. https://doi.org/10.5599/obp.15.15
  11. 11. Ndomou SCH, Mube HK. The use of plants as phytobiotics: a new challenge. In: Phytochemicals in Agriculture and Food. IntechOpen; 2023.
  12. 12. Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes and alkaloids. Plant Physiol Biochem. 2024;211:108674. https://doi.org/10.1016/j.plaphy.2024.108674
  13. 13. Mallavadhani UV, Panda AK, Rao YR. Diospyros melanoxylon leaves: a rich source of pentacyclic triterpenes. Pharm Biol. 2001;39(1):20-4. https://doi.org/10.1076/phbi.39.1.20.5941
  14. 14. Patel B, Nayak B, Behera S, Parida S. Exploring nutritional and value-added products of Diospyros melanoxylon (Roxb.) fruits. J Adv Zool. 2024;45(2).
  15. 15. Qureshi FQF, Reddy VVRV. Systematic review on phytochemical and pharmacological aspects of Diospyros melanoxylon Roxb. J Pharmacol Pharm Res. 2025;2(1):24. https://doi.org/10.5455/JPPR.20250117044642
  16. 16. Rathore K, Singh VK, Jain P, Rao SP, Ahmed Z, Singh VD. In-vitro and in-vivo antiadipogenic, hypolipidemic and antidiabetic activity of Diospyros melanoxylon (Roxb). J Ethnopharmacol. 2014;155(2):1171-6. https://doi.org/10.1016/j.jep.2014.06.050
  17. 17. Saraf PN, Srivastava J, Munoz F, Charles B, Samal P, Quamar MF. Ecological niche modelling to project past, current and future distributional shift of black ebony tree Diospyros melanoxylon Roxb. in India. Nord J Bot. 2024;2024(6):e04266. https://doi.org/10.1111/njb.04266
  18. 18. Patel J, Reddy V, Kumar GS. Evaluation of hepatoprotective activity of ethanolic extract of Diospyros melanoxylon (Roxb) leaves against CCl4 induced hepatotoxicity in albino rats. Res J Pharm Technol. 2015;8(5):571-4. https://doi.org/10.5958/0974-360X.2015.00095.5
  19. 19. Al Rashid MH, Majumder S, Mandal V, Mandal SC, Thandavarayan RA. In search of suitable extraction technique for large scale commercial production of bioactive fraction for the treatment of diabetes: the case Diospyros melanoxylon Roxb. J Tradit Complement Med. 2019;9(2):106-18. https://doi.org/10.1016/j.jtcme.2017.11.003
  20. 20. Dash S, Sahoo N, Pattnaik G, Das C, Pattanaik S, Ghosh G, et al. In vitro and in-silico anti-diabetic evaluation of the combination of Annona squamosa Linn. leaf extract and oleanolic acid. Curr Bioact Compd. 2024;20(10):E150224227005. https://doi.org/10.2174/0115734072294929240206060527
  21. 21. Rao H, Rao I, Saeed L, Aati HY, Aati S, Zeeshan M. Phytochemical analysis and bioactivity assessment of five medicinal plants from Pakistan: exploring polyphenol contents, antioxidant potential and antibacterial activities. Saudi J Biol Sci. 2023;30(10):103783. https://doi.org/10.1016/j.sjbs.2023.103783
  22. 22. Bolade OP, Williams AB, Benson NU. Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Mangifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis. Data Brief. 2021;38:107407. https://doi.org/10.1016/j.dib.2021.107407
  23. 23. Guemari F, Laouini SE, Rebiai A, Bouafia A, Meneceur S, Tliba A, et al. UV-visible spectroscopic technique-data mining tool as a reliable, fast and cost-effective method for prediction of total polyphenol contents: validation in a bunch of medicinal plant extracts. Appl Sci. 2022;12(19):9430. https://doi.org/10.3390/app12199430
  24. 24. Dash P, Ghosh G. Proteolytic and antioxidant activity of protein fractions of seeds of Cucurbita moschata. Food Biosci. 2017;18:1-8. https://doi.org/10.1016/j.fbio.2016.12.004
  25. 25. Fawwaz M, Pratama M, Musafira M, Wahab I, Iriani R, Aminah A, et al. Evaluation of antioxidant activity of Vernonia amygdalina leaves and its flavonoid-phenolic content. Indones J Pharm Sci Technol. 2023;10(2):104-10. https://doi.org/10.24198/ijpst.v10i2.41617
  26. 26. Othman M, San Loh H, Wiart C, Khoo TJ, Lim KH, Ting KN. Optimal methods for evaluating antimicrobial activities from plant extracts. J Microbiol Methods. 2011;84(2):161-6. https://doi.org/10.1016/j.mimet.2010.11.008
  27. 27. Okoye NN, Ajaghaku DL, Okeke HN, Ilodigwe EE, Nworu CS, Okoye FBC. Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm Biol. 2014;52(11):1478-86. https://doi.org/10.3109/13880209.2014.898078
  28. 28. Alsaedi HK, Alwan NA, Al-Masoudi EA. Physiological and biochemical effect of α-amyrin: a review. J Med Life Sci. 2024;6(3):443-52. https://doi.org/10.21608/jmals.2024.383360
  29. 29. da Silva Júnior WF, Pinheiro JGDO, De Menezes DLB, e Silva NEDS, De Almeida PDO, Lima ES, et al. Development, physicochemical characterization and in vitro anti-inflammatory activity of solid dispersions of α, β-amyrin isolated from Protium oilresin. Molecules. 2017;22(9):1512. https://doi.org/10.3390/molecules22091512
  30. 30. Galal SM, El Kiki SM, Elgazzar EM. The potential therapeutic approach of ursodeoxycholic acid as a potent activator of ACE-2 on cerebral disorders induced by γ-irradiation in rats. Cell Biochem Funct. 2024;42(8):e70024. https://doi.org/10.1002/cbf.70024
  31. 31. Chung PY, Navaratnam P, Chung LY. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann Clin Microbiol Antimicrob. 2011;10(1):25. https://doi.org/10.1186/1476-0711-10-25
  32. 32. Kasim Mohamed K, Fathima Banu R, Anand Kumar V, Sundaram L, Thyagarajan SP. GC–MS and surface characteristics of polyvinyl siloxane–an in vitro analysis. J Chromatogr Sci. 2022;60(2):111-16. https://doi.org/10.1093/chromsci/bmab054
  33. 33. Mostofa MG, Reza AA, Khan Z, Tsukahara T, Alam AK, Sadik MG. The apoptosis-inducing antiproliferative activity and quantitative phytochemical profiling of polyphenol-rich part of Leea aequata L. leaves. 2021. https://doi.org/10.21203/rs.3.rs-830741/v1
  34. 34. Gurunathan A, Senguttuvan J, Paulsamy S. Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum. Indian J Pharm Sci. 2016;78(1):103. https://doi.org/10.4103/0250-474X.180259
  35. 35. Parvathi K, Kandeepan C, Sabitha M, Senthilkumar N, Ramya S, Boopathi NM, et al. In-silico absorption, distribution, metabolism, elimination and toxicity profile of 9,12,15-octadecatrienoic acid (ODA) from Moringa oleifera. J Drug Deliv Ther. 2022;12(2-S):142-50. https://doi.org/10.22270/jddt.v12i2-S.5289
  36. 36. Malathi K, Anbarasu A, Ramaiah S. Ethyl iso-allocholate from a medicinal rice Karungkavuni inhibits dihydropteroate synthase in Escherichia coli: a molecular docking and dynamics study. Indian J Pharm Sci. 2017;78(6):780-8. https://doi.org/10.4172/pharmaceutical-sciences.1000184
  37. 37. Alqahtani SS, Makeen HA, Menachery SJ, Moni SS. Documentation of bioactive principles of the flower from Caralluma retrospiciens (Ehrenb) and in vitro antibacterial activity–Part B. Arab J Chem. 2020;13(10):7370-7. https://doi.org/10.1016/j.arabjc.2020.07.023
  38. 38. Naz S, Alam S, Ahmed W, Khan SM, Qayyum A, Sabir M, et al. Therapeutic potential of selected medicinal plant extracts against multi-drug resistant Salmonella enterica serovar typhi. Saudi J Biol Sci. 2022;29(2):941-54. https://doi.org/10.1016/j.sjbs.2021.10.008
  39. 39. Al Bratty M, Makeen HA, Alhazmi HA, Syame SM, Abdalla AN, Homeida HE, et al. Phytochemical, cytotoxic and antimicrobial evaluation of the fruits of miswak plant Salvadora persica L. J Chem. 2020;2020(1):4521951. https://doi.org/10.1155/2020/4521951
  40. 40. Baburaj R, Sandur RV, Das K. Comparative in vitro anti-inflammatory study on alpha amyrin isolated from bark extracts of Ficus benghalensis Linn and Alstonia boonei De Wild. RGUHS J Pharm Sci. 2022;12(4). https://doi.org/10.26463/rjps.12_4_3
  41. 41. Oh KK, Adnan M, Cho DH. Network pharmacology-based study to uncover potential pharmacological mechanisms of Korean thistle (Cirsium japonicum var. maackii (Maxim.) Matsum.) flower against cancer. Molecules. 2021;26(19):5904. https://doi.org/10.3390/molecules26195904
  42. 42. Abdelhamid MS, Kondratenko EI, Lomteva NA. GC-MS analysis of phytocomponents in the ethanolic extract of Nelumbo nucifera seeds from Russia. J Appl Pharm Sci. 2015;5(4):115-18. https://doi.org/10.7324/JAPS.2015.50419
  43. 43. Akwu NA, Naidoo Y, Singh M, Nundkumar N, Lin J. Phytochemical screening, in vitro evaluation of the antimicrobial, antioxidant and cytotoxicity potentials of Grewia lasiocarpa E. Mey. ex Harv. S Afr J Bot. 2019;123:180-92. https://doi.org/10.1016/j.sajb.2019.03.004
  44. 44. Bruno-Bárcena JM, Azcárate-Peril MA, Hassan HM. Role of antioxidant enzymes in bacterial resistance to organic acids. Appl Environ Microbiol. 2010;76(9):2747-53. https://doi.org/10.1128/AEM.02718-09
  45. 45. Bolade OP, Williams AB, Benson NU. Dataset on analytical characterization of bioactive components from Azadirachta indica, Canna indica, Mangifera indica and Moringa oleifera leaf extracts and their applications in nanoparticles biosynthesis. Data Brief. 2021;38:107407. https://doi.org/10.1016/j.dib.2021.107407
  46. 46. Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C, et al. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot. 2021;137:257-64. https://doi.org/10.1016/j.sajb.2020.10.022
  47. 47. Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol. 2025;1-105.
  48. 48. Gulcin İ, Alwasel SH. Fe3+ reducing power as the most common assay for understanding the biological functions of antioxidants. Processes. 2025;13(5):1296. https://doi.org/10.3390/pr13051296
  49. 49. Cushnie TT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011;38(2):99-107. https://doi.org/10.1016/j.ijantimicag.2011.02.014
  50. 50. Lobiuc A, Pavăl NE, Mangalagiu II, Gheorghiță R, Teliban GC, Amăriucăi-Mantu D, et al. Future antimicrobials: natural and functionalized phenolics. Molecules. 2023;28(3):1114. https://doi.org/10.3390/molecules28031114

Downloads

Download data is not yet available.