Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

A case study on three cultivars and optimization of LD50 dose of gamma irradiation for inducing variability in pomegranate for horticultural traits and bacterial blight resistance 

DOI
https://doi.org/10.14719/pst.9903
Submitted
8 June 2025
Published
24-09-2025 — Updated on 16-10-2025
Versions

Abstract

Effective induced mutation breeding entails determining the ideal radiation dosage by examining how it influences the growth attributes of the crop. For evaluating the impact of different doses of gamma radiation on pomegranate (Punica granatum), three cultivars viz., Kandhari Kabuli, Bhagwa and Daru were treated with physical mutagen (gamma rays) at doses of 0, 6, 9, 12, 15, 18, 21, 24 kR to induce variability. The observations were recorded at different time intervals after sowing in the polyhouse and after transplanting in field conditions (20, 30 and 40 days after sowing and 70 days after transplanting, subsequently). The germination percentage, survival percentage and LD50 doses were calculated for all three cultivars. Mutant seedlings from different concentrations of gamma rays were evaluated for chlorophyll content of leaves and molecular characteristics. The LD50 doses for CVS. Kandhari Kabuli, Bhagwa and Daru were 15.26 kR, 15.08 kR and 13.74 kR, respectively. Statistical analysis revealed significant dose-dependent reductions in germination and survival rates (p < 0.05), with LD₅₀ values determined to be 15.26 kR for Kandhari Kabuli, 15.08 kR for Bhagwa and 13.74 kR for Daru. These results demonstrate scientifically important variability among cultivars in their sensitivity to gamma radiation, providing critical reference points for optimizing mutagenic doses in pomegranate breeding programs.

References

  1. 1. Holland D, Hatib K, Bar-Ya’akov I. Pomegranate: botany, horticulture and breeding. Hortic Rev. 2009;35:127-91. https://doi.org/10.1002/9780470593776.ch2
  2. 2. Agricultural and Processed Food Products Export Development Authority (APEDA). Annual export production report. 2023. https://agriexchange.apeda.gov.in
  3. 3. National Horticulture Board. Indian horticulture database. Govt. of India. 2018:136-51.
  4. 4. Patil AB, Manjunath G. Challenges and opportunities for production and supply chain of pomegranate. Hortic Sci. 2014;123:1-3.
  5. 5. Bharat RA, Prathmesh SP, Sarsu F, Suprasanna P. Induced mutagenesis using gamma rays: biological features and applications in crop improvement. OBM Genet. 2024;8(2):1-27. https://doi.org/10.21926/obm.genet.2402233
  6. 6. Dhole VJ, Jegadeesan S, Punniyamoorthy D. Use of gamma rays in crop improvement. In: Plant mutagenesis: sustainable agriculture and rural landscapes. Cham: Springer Nature Switzerland; 2024:135-57. https://doi.org/10.1007/978-3-031-50729-8_11
  7. 7. Gangwar R, Chaudhary P, Kumar D, Bisht N, Raj A, Kumar D, et al. A comprehensive review on application of conventional and mutation approaches in genetic improvement of ornamental crops. J Adv Biol Biotechnol. 2025;28(1):390-407. https://doi.org/10.9734/jabb/2025/v28i11893
  8. 8. Ahloowalia BS, Maluszynski M, Nichterlein K. Global impact of mutation-derived varieties. Euphytica. 2004;135:187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f
  9. 9. Jalikop SH, Kumar PS, Rawal RD, Kumar R. Breeding pomegranate for fruit attributes and resistance to bacterial blight. Indian J Hortic. 2006;3(4):351-6.
  10. 10. Postelnicu T. Probit analysis. In: Lovric M, editor. International encyclopedia of statistical science. Berlin: Springer; 2011. https://doi.org/10.1007/978-3-642-04898-2_461
  11. 11. International Union for the Protection of New Varieties of Plants (UPOV). Guidelines for the conduct of tests for distinctness, homogeneity and stability in pomegranate (Punica granatum L.). Geneva: UPOV; 2013:34.
  12. 12. Halfacre RG, Barden JA, Rollins HA Jr. Effect of Alar on morphology, chlorophyll content and net CO₂ assimilation rate of young apple trees. Proc Am Soc Hortic Sci. 1968;93:40-52.
  13. 13. Hiscox JD, Israelstam GF. A method for extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 1979;57:1332-4. https://doi.org/10.1139/b79-163
  14. 14. Raju J, Benagi VI, Naragund VB, Ashtaputre SA. Survey for the incidence and severity of bacterial blight in pomegranate caused by Xanthomonas axonopodis pv. punicae. Karnataka J Agric Sci. 2011;24(4):570-2.
  15. 15. Gomez KA, Gomez AA. Statistical procedures for agricultural research. 2nd ed. New York: John Wiley and Sons; 1984:680.
  16. 16. Noor NM, Jeevamoney J, Clyde MM, Rao VR. Radiosensitivity and in vitro studies of Citrus suhuiensis. IAEA-TECDOC-1615. Vienna: International Atomic Energy Agency; 2009.
  17. 17. Sharma L, Kaushal M, Gill MIS, Bali S. Germination and survival of Citrus jambhiri seeds and epicotyls after treating with different mutagens under in vitro conditions. Middle East J Sci Res. 2013;16:250-5.
  18. 18. Karsinah NLP, Indriyani, Sukartini. The effect of gamma irradiation on growth of mango grafted material. J Agric Biol Sci. 2012;7:840-4.
  19. 19. Sharma R, Sharma A, Khan I. Effect of gamma irradiation on seed germination and seedling growth in Citrus jambhiri Lush. Int J Curr Microbiol Appl Sci. 2018;7(3):1037-44. https://doi.org/10.20546/ijcmas.2018.703.123
  20. 20. Karsinah K, Wulandari RA, Sujiprihati S. Gamma ray irradiation effects on seed germination and seedling growth of mango (Mangifera indica L.). Indones J Agric Sci. 2019;20(1):1-8. https://doi.org/10.21082/ijas.v20n1.2019.p1-8
  21. 21. Singh R, Kumari N, Singh D. Gamma irradiation-induced variability in seedling traits of guava (Psidium guajava L.). J Radiat Res Appl Sci. 2022;15(1):32-41. https://doi.org/10.1016/j.jrras.2022.01.005
  22. 22. Meena RK, Bairwa SK, Lal G. Effect of gamma rays on germination, survival and seedling growth in cowpea (Vigna unguiculata L.). Legume Res. 2021;44(5):615-20. https://doi.org/10.18805/LR-4447
  23. 23. Shin YU, Kim WC, Moon JY, Ching KH. Induction of compact mutants in pears (Pyrus pyrifolia Nokai) by gamma irradiation. Res Rep Rural Dev Adm Hortic. 1985;30:73-8.
  24. 24. Kolesnikova AF, Zavyalova AV. Use of ionizing radiation in mutation breeding of sour and sweet cherry. Sci Tech Bull. 1989;187:47-50.
  25. 25. Fuentes-Lorenzo JL, Rodriguez-Medina NN, Santiago-Hernandez L, Valdes Carbonel Y, Ramirez-Perez I, Velazquez-Palenzuela B, et al. Zygotic embryo culture and mutation breeding in avocado (Persea americana Mill.). Actas Congr Mund Aguacate. 2003:73-81.
  26. 26. Buda A, Brigitte H, Zatylny A, Gagnon C. Determination of radiosensitivity and optimal irradiation doses for inducing mutations in sweet and sour cherry cultivars (Prunus avium and Prunus cerasus). Sci Hortic. 2021;281:109989. https://doi.org/10.1016/j.scienta.2021.109989
  27. 27. Fuentes-Lorenzo D, Ríos D, Rodríguez A, Talavera C. Radiosensitivity assessment and LD₅₀ determination in avocado (Persea americana Mill.) cultivars ‘Hass’ and ‘Duke’. Sci Hortic. 2020;261:108996. https://doi.org/10.1016/j.scienta.2019.108996
  28. 28. Chandra R, Kumar P, Babu D, Marathe RA, Jadhav VT. Effect of gamma irradiation on seed germination and survival of seedlings of pomegranate (Punica granatum L.). Indian J Arid Hortic. 2009;4(1):49-50.
  29. 29. Vos JE, Du Preez RJ, Froneman I, Hannweg K, Husselman J, Rheeder S. Mutation breeding in South Africa 2003-2004. IAEA-TECDOC-1615. Vienna: International Atomic Energy Agency; 2009.
  30. 30. Zhang Y, Li Q, Wang J, Chen X. Comparative evaluation of statistical models for LD₅₀ estimation in plant mutagenesis using gamma irradiation. Plant Mutat Rep. 2023;5(2):45-54. https://doi.org/10.1016/j.pmr.2023.02.005
  31. 31. Benagi VI, Ravi Kumar MR, Gowdar SB, Basavarj BB. Survey on diseases of pomegranate in northern Karanatka. In2nd Int. Symp. Pomegranate and Minor including Mediterranean Fruits, Univ. Agric. Sci.2009:23-27.
  32. 32. Yenjerappa ST, Nargund VB, Ravikumar MR, Byadagi AS. Efficacy of bactericides and antibacterial chemicals against bacterial blight of pomegranate. Int J Plant Prot. 2014;7(1):201-8.
  33. 33. Singh NV, Sharma J, Dongare MD, Gharate R, Chinchure S, Nanjundappa M, et al. In vitro and in planta antagonistic effect of endophytic bacteria on blight-causing Xanthomonas axonopodis pv. punicae: a destructive pathogen of pomegranate. Microorganisms. 2023;11(5):1-12. https://doi.org/10.3390/microorganisms11010005
  34. 34. Hegde DR, Nandan M, Gunnaiah R, Doddaraju P, Dumble P, Manjunatha G, et al. Genome and transcriptome exploration reveals receptor-like kinases as potential resistance gene analogs against bacterial blight in pomegranate. Mol Biol Rep. 2024;51(1):735. https://doi.org/10.1007/s11033-024-09670-8
  35. 35. Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, et al. Harnessing genome editing techniques to engineer disease resistance in plants. Front Genome Ed. 2024;10:550. https://doi.org/10.3389/fgeed.2024.1399051

Downloads

Download data is not yet available.