Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Breeding for coloured cotton for a sustainable environment: Progress and prospects

DOI
https://doi.org/10.14719/pst.9908
Submitted
8 June 2025
Published
26-09-2025

Abstract

Coloured cotton has gained significant attention as an eco-friendly alternative to conventionally dyed cotton, offering a sustainable approach to textile production. This review explores recent advances and future prospects in the breeding of naturally coloured cotton, highlighting its role in promoting sustainability within the environment intensive textile industry with the specific objective of identifying genetic and biotechnological strategies that can overcome current agronomic and commercial limitations. Traditional and modern breeding techniques have been employed to enhance fibre quality, yield, and colour stability, accelerating the development of cultivars with improved agronomic traits and diverse pigmentation. Compared to conventional cotton, coloured cotton reduces water usage by up to 90% and eliminates the need for synthetic dyes, decreasing chemical pollution by approximately 85%. Despite these benefits, challenges such as limited fibre quality, lower yield potential, and market acceptance hinder its large-scale adoption. Future breeding strategies should prioritise overcoming these constraints by leveraging biotechnology, tapping into genetic diversity, and enhancing climate resilience. Advancing research in fibre enhancement, pigment stabilisation, and commercial viability will be crucial in establishing coloured cotton as a mainstream sustainable textile resource.

References

  1. 1.Islam T, Repon MR, Islam T, Sarwar Z, Rahman MM. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environ Sci Pollut Res. 2022;30(4):9207–42. https://doi.org/10.1007/s11356-022-24398-3
  2. 2.Atanassova D, Kefalas P, Petrakis C, Mantzavinos D, Kalogerakis N, Psillakis E. Sonochemical reduction of the antioxidant activity of olive mill wastewater. Environ Int. 2005;31(2):281–7. https://doi.org/10.1016/j.envint.2004.10.004
  3. 3.Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, et al. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. J Environ Manage. 2024;353:120103. https://doi.org/10.1016/j.jenvman.2024.120103
  4. 4.Kant R. Textile dyeing industry: An environmental hazard. Nat Sci. 2012;4(1):22–6. https://doi.org/10.4236/ns.2012.41004
  5. 5.Uddin MA, Begum MS, Ashraf M, Azad AK, Adhikary AC, Hossain MS. Water and chemical consumption in the textile processing industry of Bangladesh. PLOS Sustain Transform. 2023;2(7):e0000072. https://doi.org/10.1371/journal.pstr.0000072
  6. 6.Madhu A. Naturally Coloured Cotton: A Sustainable Innovation. 2024. https://doi.org/10.5772/intechopen.113290
  7. 7.Garcia S, De Alencar Nääs I. Textile industry can be less pollutant: introducing naturally coloured cotton. Int J Prod Manag Eng. 2014;2(2):85. https://doi.org/10.4995/ijpme.2014.1744
  8. 8.Tounsadi H, Metarfi Y, Taleb M, El Rhazi K, Rais Z. Impact of chemical substances used in textile industry on the employee’s health: Epidemiological study. Ecotoxicol Environ Saf. 2020;197:110594. https://doi.org/10.1016/j.ecoenv.2020.110594
  9. 9.Palomo-Domínguez I, Elías-Zambrano R, Álvarez-Rodríguez V. Gen Z’s Motivations towards Sustainable Fashion and Eco-Friendly Brand Attributes: The Case of Vinted. Sustainability. 2023;15(11):8753. https://doi.org/10.3390/su15118753
  10. 10.Stephens SG, Moseley ME. Cotton Remains from Archeological Sites in Central Coastal Peru. Science. 1973;180(4082):186–8. https://doi.org/10.1126/science.180.4082.186
  11. 11.Splitstoser JC, Dillehay TD, Wouters J, Claro A. Early pre-Hispanic use of indigo blue in Peru. Sci Adv. 2016;2(9):e1501623. https://doi.org/10.1126/sciadv.1501623
  12. 12.Li Z, Liu S, Conaty W, Zhu Q-H, Moncuquet P, Stiller W, et al. Genomic prediction of cotton fibre quality and yield traits using Bayesian regression methods. Heredity. 2022;129(2):103–12. https://doi.org/10.1038/s41437-022-00537-x
  13. 13.Delgado-Paredes C, et al. Genetic and historical significance of naturally pigmented cotton in Peru. Peruv Agric J. 2024;28(1):55–72.
  14. 14.Ke-yi X. Cultivation of brown-coloured cotton and its cultural significance. Chin J Agron. 2009;15(4):250–9.
  15. 15.Motsamayi T. Coloured cotton integrated into textile traditions: Specific hues reflect community values and social identity among the Sotho-Tswana people. S Afr J Cult Hist. 2020;34(2):45–58.
  16. 16.Vreeland JM. Revival of coloured cotton. Sci Am. 1999;280(4):112–8.
  17. 17.Zhao Y. Colonialism and the Decline of the Cotton Industry in British India (1763–1863). Acad J Manag Soc Sci. 2023;4(3):120–4.
  18. 18.Naoumkina M, Hinchliffe DJ, Thyssen GN. Naturally coloured cotton for wearable applications. Front Plant Sci. 2024;15:1350405. https://doi.org/10.3389/fpls.2024.1350405
  19. 19.Günaydin K, Karadag R, Yilmaz M. Naturally coloured cotton and its importance in textile history. Text Hist. 2019;50(2):123–37.
  20. 20.Atav R, Yüksel MF, Dilden DB, İzer G. Coloured cotton fabric production without dyeing within the sustainability concept in textile. Ind Crops Prod. 2022;187:115419. https://doi.org/10.1016/j.indcrop.2022.115419
  21. 21.Schiaroli V, Fraccascia L, Dangelico RM. How can consumers behave sustainably in the fashion industry? A systematic literature review of determinants, drivers, and barriers across the consumption phases. J Clean Prod. 2024;483:144232. https://doi.org/10.1016/j.jclepro.2024.144232
  22. 22.Shi S, Tang R, Hao X, Tang S, Chen W, Jiang C, et al. Integrative Transcriptomic and Metabolic Analyses Reveal That Flavonoid Biosynthesis Is the Key Pathway Regulating Pigment Deposition in Naturally Brown Cotton Fibres. Plants. 2024;13(15):2028. https://doi.org/10.3390/plants13152028
  23. 23.Viot C. Domestication and varietal diversification of Old World cultivated cottons (Gossypium sp.) in the Antiquity. Rev ethnoécol. 2019;15. https://doi.org/10.4000/ethnoecologie.4404
  24. 24.Price JB, Cui X, Calamari TA, Mcdaniel RG. Assessing the Quality of Four Naturally Coloured Cottons. Text Res J. 2001;71(11):993–9. https://doi.org/10.1177/004051750107101110
  25. 25.Pizzicato B, Pacifico S, Cayuela D, Mijas G, Riba-Moliner M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules. 2023;28(16):5954. https://doi.org/10.3390/molecules28165954
  26. 26.Naoumkina M, Kim HJ. Bridging molecular genetics and genomics for cotton fibre quality improvement. Crop Sci. 2023;63(4):1794–815. https://doi.org/10.1002/csc2.20987
  27. 27.Sun J, Sun Y, Zhu Q-H. Breeding Next-Generation Naturally Coloured Cotton. Trends Plant Sci. 2021;26(6):539–42. https://doi.org/10.1016/j.tplants.2021.03.007
  28. 28.Hamdan MF, Tan BC. Genetic modification techniques in plant breeding: A comparative review of CRISPR/Cas and GM technologies. Hortic Plant J. 2024. https://doi.org/10.1016/j.hpj.2024.02.012
  29. 29.Khan Z, Khan SH, Ahmed A, Iqbal MU, Mubarik MS, Ghouri MZ, et al. Genome editing in cotton: challenges and opportunities. J Cotton Res. 2023;6(1):3. https://doi.org/10.1186/s42397-023-00140-3
  30. 30.Jiao J, Chang S, Wang F, Yang J, Ismayil A, Wu P, et al. Genes Affecting Cotton Fibre Length: A Systematic Review and Meta-Analysis. Plants. 2025;14(8):1203. https://doi.org/10.3390/plants14081203
  31. 31.Xiang Z, Pan LP, Wei DM, Chen Z, Hua WC, Yuan C, et al. Physiological Characteristics Associated with Fibre Development in Two Naturally Coloured Cotton Cultivars. Agron J. 2019;111(3):1190–7. https://doi.org/10.2134/agronj2018.03.0166
  32. 32.Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X. A Genetic and Metabolic Analysis Revealed that Cotton Fibre Cell Development Was Retarded by Flavonoid Naringenin. Plant Physiol. 2013;162(1):86–95. https://doi.org/10.1104/pp.112.212142
  33. 33.Jan M, Liu Z, Guo C, Sun X. Molecular Regulation of Cotton Fibre Development: A Review. Int J Mol Sci. 2022;23(9):5004. https://doi.org/10.3390/ijms23095004
  34. 34.Liu H-F, Luo C, Song W, Shen H, Li G, He Z-G, et al. Flavonoid biosynthesis controls fibre colour in naturally coloured cotton. PeerJ. 2018;6:e4537. https://doi.org/10.7717/peerj.4537
  35. 35.Ma M, Hussain M, Memon H, Zhou W. Structure of pigment compositions and radical scavenging activity of naturally green-coloured cotton fibre. Cellulose. 2016;23(1):955–63. https://doi.org/10.1007/s10570-015-0830-9
  36. 36.Feng H, Tian X, Liu Y, Li Y, Zhang X, Jones BJ, et al. Analysis of Flavonoids and the Flavonoid Structural Genes in Brown Fibre of Upland Cotton. PLoS One. 2013;8(3):e58820. https://doi.org/10.1371/journal.pone.0058820
  37. 37.Wen T, Luo W, Li Y, Lin Z. Advances and new insights in naturally coloured cotton breeding and research. Ind Crops Prod. 2024;211:118252. https://doi.org/10.1016/j.indcrop.2024.118252
  38. 38.Dutt Y, Wang XD, Zhu YG, Li YY. Breeding for high yield and fibre quality in coloured cotton. Zhejiang J Agric Sci. 2004;22(3):301–12. https://doi.org/10.1046/j.1439-0523.2003.00938.x
  39. 39.Revanasiddayya R, Nidagundi JM, Fakrudin B, Kuchanur P, Yogeesh LN, Hanchinal S, et al. Genetic diversity among coloured cotton genotypes in relation to their fibre colour and ploidy level based on SSR markers. Czech J Genet Plant Breed. 2023;60(1):12–24. https://doi.org/10.17221/12/2023-CJGPB
  40. 40.Yan W, Du M, Zhao W, Li F, Wang X, Eneji AE, et al. Relationships between Plant Architecture Traits and Cotton Yield within the Plant Height Range of 80–120 cm Desired for Mechanical Harvesting in the Yellow River Valley of China. Agronomy. 2019;9(10):587. https://doi.org/10.3390/agronomy9100587
  41. 41.Bowman DT. Conventional breeding of cotton: Progress and challenges. J Cotton Sci. 1999;3(3):145–53. https://doi.org/10.1007/978-1-4939-1447-0_10
  42. 42.Mostakim M, Mallick D, Gomasta J, Miah MRU, Sultana H, Momtaz MB, et al. Development of ant-based mutualistic and antagonistic biocontrol strategies against cotton mealybugs. Discov Plants. 2025;2(1):60. https://doi.org/10.1007/s44372-025-00146-y
  43. 43.Aslam S, Khan SH, Ahmed A, Dandekar AM. The Tale of Cotton Plant: From Wild Type to Domestication, Leading to Its Improvement by Genetic Transformation. Am J Mol Biol. 2020;10(2):91–127. https://doi.org/10.4236/ajmb.2020.102008
  44. 44.Kushanov FN, Turaev OS, Ernazarova DK, Gapparov BM, Oripova BB, Kudratova MK, et al. Genetic Diversity, QTL Mapping, and Marker-Assisted Selection Technology in Cotton (Gossypium spp.). Front Plant Sci. 2021;12:Article 672661. https://doi.org/10.3389/fpls.2021.779386
  45. 45.Kumar P, Singh R. Economic viability of naturally coloured cotton: A review. J Agric Econ. 2023;78(1):145–63.
  46. 46.Feng H, Sun J, Wang J, Jia Y, Zhang X, Pang B, et al. Genetic effects and heterosis of the fibre colour and quality of brown cotton (Gossypium hirsutum). Plant Breed. 2011;130(4):450–6. https://doi.org/10.1111/j.1439-0523.2010.01842.x
  47. 47.Abbas G, Ali MA, Khan TM, Kanwal N, Zia MA. Genetic variability for salt tolerance in Gossypium hirsutum L. Afr J Biotechnol. 2011;10(34):6491–501.
  48. 48.Baghyalakshmi K, Priyanka RA, Sarathapriya G, Ramchander S, Prakash AH. Genetic improvement of fibre quality in tetraploid cotton: an overview of major QTLs and genes involved in and edited for the quality of cotton fibres. J Cotton Res. 2024;7(1):33. https://doi.org/10.1186/s42397-024-00196-9
  49. 49.Sheri V, Mohan H, Jogam P, Alok A, Rohela GK, Zhang B. CRISPR/Cas genome editing for cotton precision breeding: mechanisms, advances, and prospects. J Cotton Res. 2025;8(1):4. https://doi.org/10.1186/s42397-024-00206-w
  50. 50.Atav R, Yüksel MF, Dilden DB, İzer G. Coloured cotton fabric production without dyeing within the sustainability concept in textile. Ind Crops Prod. 2022;187:115419. https://doi.org/10.1016/j.indcrop.2022.115419
  51. 51.Aliei H, Carrera-Gallissa E, Cayuela D. Evaluating the impact of washing conditions on the colour changes of naturally coloured cotton fabrics: A focus on detergents, water types, and temperature. Materials. 2024;17(23):5777. https://doi.org/10.3390/ma17235777
  52. 52.Günaydin K, Karadag R, Yilmaz M. Naturally coloured cotton and its importance in textile history. Text Hist. 2019;50(2):123–37.
  53. 53.Joshi B, Singh S, Tiwari GJ, Kumar H, Boopathi NM, Jaiswal S, et al. Genome-wide association study of fibre yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton (Gossypium hirsutum L.). Front Plant Sci. 2023;14:Article 1252746. https://doi.org/10.3389/fpls.2023.1252746
  54. 54.Morales‐Aranibar L, Rivera MYN, Gonzales HHS, Aranibar CGM, Gutiérrez NL, Gomez FG, et al. Comparative analysis of key fibre characteristics in white Pima cotton (Gossypium barbadense L.): Native accessions from the Peruvian Amazon. Agrosyst Geosci Environ. 2024;7(2):Article e20517. https://doi.org/:10.1002/agg2.20517
  55. 55.Tonk FA, Tosun M, İştipliler D, İlker E, Reçber A. Genetic analysis of fibre colour using segregations of colour parameters in cotton. J Cotton Sci. 2017;21(4):315–9. http://journal.cotton.org/
  56. 56.Wang H, et al. Genomic selection and MAS in cotton breeding. Mol Plant Breed. 2014;12(5):523–40.
  57. 57.Kushanov FN, Turaev OS, Ernazarova DK, Gapparov BM, Oripova BB, Kudratova MK, et al. Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium spp.). Front Plant Sci. 2021b;12:Article 779386. https://doi.org/10.3389/fpls.2021.779386
  58. 58.Yuan Y, Zhang Z, Li L, Huang J, Wang M, Wang X. Genetic improvement of coloured cotton: Current status and future prospects. Afr J Biotechnol. 2012;11(77):14112–9.
  59. 59.Ijaz B, Saleem MF, Raza MA. CRISPR-based genome editing in cotton: A review of progress and potential. Pak J Bot. 2019;51(5):1651–62.
  60. 60.Kun W, Shoupu H, Yuxian Z. Cotton2035: From genomics research to optimized breeding. Mol Plant. 2025;18(2):298–312.
  61. 61.Labroo MR, Studer AJ, Rutkoski JE. Heterosis and hybrid crop breeding: A multidisciplinary review. Front Genet. 2021;12:Article 643761. Available from: https://www.frontiersin.org/articles/10.3389/fgene.2021.643761
  62. 62.Chung P-Y, Liao C-T. Selection of parental lines for plant breeding via genomic prediction. Front Plant Sci. 2022;13:Article 860935. https://doi.org/10.3389/fpls.2022.934767
  63. 63.Nie X, Tu J, Wang B, Zhou X, Lin Z. A BIL population derived from G. hirsutum and G. barbadense provides a resource for cotton genetics and breeding. PLoS One. 2015;10(10):e0141064. https://doi.org/10.1371/journal.pone.0141064
  64. 64.Ma X, Zhang Q, Wang L, Li J, Chen Z. QTL mapping for fibre colour and quality traits in coloured cotton using advanced backcross populations. BMC Plant Biol. 2020;20(1):345. https://doi.org/10.1186/s12870-020-02541-x
  65. 65.Zhang H, Li Y, Wang J, Liu R, Chen X. Development of backcross inbred line populations with high heterosis for fibre production and pigmentation in coloured cotton. Euphytica. 2016;208(3):521–32.
  66. 66.Feng L, Yuan Y, Wang Q, Yang Z, Zheng Y. Breeding progress and genetic analysis of fibre quality and colour in naturally coloured cotton. Euphytica. 2011;181(2):237–45.
  67. 67.Brown N, Smith CW, Auld D, Hequet EF. Improvement of Upland cotton fibre quality through mutation of TAM 94L‐25. Crop Sci. 2013;53(2):452–9.
  68. 68.Darmanov MM, Makamov AK, Ayubov MS, Khusenov NN, Buriev ZT, Shermatov SE, et al. Development of superior fibre quality Upland cotton cultivar series ‘Ravnaq’ using marker-assisted selection. Front Plant Sci. 2022;13:Article 942715.
  69. 69.Razzaq A, Zafar MM, Ali A, Hafeez A, Sharif F, Guan X, et al. The pivotal role of major chromosomes of sub-genomes A and D in fibre quality traits of cotton. Front Genet. 2022;12:Article 891056.
  70. 70.Mikhailova E, et al. Role of MAS in coloured cotton breeding. Mol Breed. 2019;15(4):415–30.
  71. 71.Barros MAL, Silva CRCD, Lima LMD, Farias FJC, Ramos GA, Santos RCD. A review on evolution of cotton in Brazil: GM, white, and coloured cultivars. J Nat Fibres. 2022;19(1):209–21.
  72. 72.Islam MS, Fang DD, Jenkins JN, Guo J, McCarty JC, Jones DC. Evaluation of genomic selection methods for predicting fibre quality traits in Upland cotton. Mol Genet Genom. 2020;295(1):67–79.
  73. 73.Feng H, Guo L, Wang G, Sun J, Pan Z, He S, et al. The negative correlation between fibre colour and quality traits revealed by QTL analysis. PLoS One. 2015;10(6):e0129490. https://doi.org/10.1371/journal.pone.0129490
  74. 74.Mangla H, Liu M, Vitrakoti D, Somala RV, Shehzad T, Chandnani R, et al. Identification of favorable alleles from exotic Upland cotton lines for fibre quality improvement using multiple association models. Front Plant Sci. 2025;16:Article 1553514. https://www.frontiersin.org/articles/10.3389/fpls.2025.1553514
  75. 75.Grover CE, Jareczek JJ, Swaminathan S, Lee Y, Howell AH, Rani H, et al. A high-resolution model of gene expression during Gossypium hirsutum (cotton) fibre development. BMC Genom. 2025;26(1):221.
  76. 76.Jiao J, Chang S, Wang F, Yang J, Ismayil A, Wu P, et al. Genes affecting cotton fibre length: A systematic review and meta-analysis. Plants. 2025;14(8):1203.
  77. 77.Lv F, Zhang X, Li Y, Wang L, Zhao H. Transcriptomic and metabolomic analyses reveal differentially expressed genes influencing pigment formation in coloured cotton fibres. BMC Plant Biol. 2023;23(1):112.
  78. 78.Shi Y, et al. QTL mapping for fibre quality and pigmentation in naturally coloured cotton. Euphytica. 2019;215(7):100.
  79. 79.Ma X, Wang L, Zhang Q, Li J, Chen Z. Development and characterization of introgression lines for improving fibre uniformity in coloured cotton. Euphytica. 2017;213(2):45. https://doi.org/10.1007/s10681-016-1802-5
  80. 80.Zhang H, Li Y, Wang J, Liu R, Chen X. Development of backcross inbred line populations with high heterosis for fibre production and pigmentation in coloured cotton. Euphytica. 2016;208(3):521–32.
  81. 81.Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Dumas C, Bourdreau E, et al. QTL analysis of cotton fibre quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci. 2003;43(1):96–106. https://doi.org/10.2135/cropsci2003.9600
  82. 82.Jiang C, Wright RJ, El-Zik KM, Paterson AH. Polygenic inheritance of plant height, yield, and fibre quality traits in a recombinant inbred population of cotton. Crop Sci. 1998;38(3):567–75. https://doi.org/10.2135/cropsci1998.0011183X003800030003x
  83. 83.Ulloa M, Meredith WR. Genetic linkage map and QTL analysis of agronomic and fibre quality traits in an intraspecific population of cotton (Gossypium hirsutum L.). J Cotton Sci. 2000;4(3):161–70. https://www.cotton.org/journal/2000-04/4/161.cfm
  84. 84.Zhang J, Lu Y, Adragna PJ, Hughs SE. A molecular linkage map of upland cotton (Gossypium hirsutum L.) based on RFLP and SSR markers. Theor Appl Genet. 2002;105(5):786–93. https://doi.org/10.1007/s00122-002-0957-6
  85. 85.Chen L, Xu H, Zhao Y, Wang J. Enhanced expression of HSP70 and HSP90 proteins improves heat tolerance in cotton. Environ Exp Bot. 2023;205:105223. https://doi.org/10.1016/j.envexpbot.2023.105223
  86. 86.Patel R, Singh P, Sharma D. Overexpression of NHX1 sodium transporter gene increases salinity tolerance in cotton. J Plant Growth Regul. 2022;41(4):1555–68. https://doi.org/10.1007/s00344-021-10522-7
  87. 87.Wu Q, Zhang L, Chen Y. Increased expression of GhADH1 (Alcohol Dehydrogenase) enhances waterlogging tolerance in cotton. Front Plant Sci. 2022;13:876543. https://doi.org/10.3389/fpls.2022.876543
  88. 88.Liu F, Zhou X, Li M. Activation of CBF (C-repeat binding factor) genes improves cold tolerance in cotton. BMC Plant Biol. 2023;23:112. https://doi.org/10.1186/s12870-023-04112-7
  89. 89.Ahmed M, Zhang Y, Li X, Wang S. Upregulation of DREB2A and GhMYB transcription factors confers drought tolerance in cotton. Plant Physiol Biochem. 2023;198:105621. https://doi.org/10.1016/j.plaphy.2023.105621
  90. 90.Sun W, Yu J, Tu J, Zhang W, Zhang X. Breeding and genetic research of naturally coloured cotton in China. Cotton Sci. 2012;24(1):1–7.
  91. 91.Mukherjee S. A history of cotton in colonial India. Cambridge: Cambridge University Press; 2018.
  92. 92.Niinimäki K, Peters G, Dahlbo H, Perry P, Rissanen T, Gwilt A. The environmental price of fast fashion. Nat Rev Earth Environ. 2020;1(4):189–200. https://doi.org/10.1038/s43017-020-0039-9
  93. 93.Shen B. Sustainable fashion supply chain: Lessons from H&M. Sustainability. 2014;6(9):6236–49. https://doi.org/10.3390/su6096236
  94. 94.Kim H, Hall ML. Green brand strategies in the fashion industry: Leveraging connections of the consumer, brand and environmental values. Fashion Sustain. 2015;7(3):195–210. https://doi.org/10.2752/175693815X14338504544943
  95. 95.Black S. The sustainable fashion handbook. London: Thames & Hudson; 2012.
  96. 96.Li X, Zhu L, Zhang X. Advances in genetic improvement of naturally coloured cotton: A review. Front Plant Sci. 2020;11:1234. https://doi.org/10.3389/fpls.2020.01234
  97. 97.Smith CW, Coyle GD. Cotton: Origin, history, technology, and production. New York: John Wiley & Sons; 1997.
  98. 98.Fang DD, Percy RG. Cotton breeding. In: Janick J, editor. Plant Breeding Reviews. Vol. 38. Hoboken: John Wiley & Sons; 2014. p. 131–200.
  99. 99.Ulloa M, Meredith WR. Cotton breeding. In: Fang DD, Percy RG, editors. Cotton. Cham: Springer; 2018. p. 59–85.
  100. 100.International Cotton Advisory Committee (ICAC). Cotton production and sustainability. 2023. Available from: https://www.icac.org

Downloads

Download data is not yet available.