Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Predicting tomato yield under heat stress in Tamil Nadu using Machine Learning Models

DOI
https://doi.org/10.14719/pst.9940
Submitted
9 June 2025
Published
09-09-2025

Abstract

Rise in temperature and its unpredictability has an adverse effect on growth and yield, making it an important variable in tomato (Solanum lycopersicum L.) production. This study aimed at evaluating the impact of temperature variability on tomato yield and developing predictive models using Machine Learning (ML) techniques to forecast future productivity under changing climate. The tomato yield was predicted using Machine Learning Models (MLM) such as Random Forest (RF), XGBoost (XG) and K-Nearest Neighbours (KNN) in response to temperature changes. The model was evaluated and improved by comparing both Train-Test split (T-T) and K-fold cross validation techniques. Among these, the T-T method performed better and was used for model training and testing. The findings showed that RF model outperformed the others, with the T-T dataset, achieving Coefficient of Determination (R2) = 0.84, Mean Squared Error (MSE) = 7.88, Root Mean Square Error (RMSE) = 2.81 and Mean Absolute Error (MAE) = 1.19, followed by XGBoost and KNN. Additionally, Kernel Density Estimation (KDE) correlation analysis was employed to examine the relationship between yield and temperature. Moreover, future tomato yields were predicted under Shared Socio-economic Pathways (SSP2-4.5 and SSP5-8.5) for the period of 2023-2026 using the RF model. Tomato productivity is likely to increase gradually in the immediate future and eventually fall under extreme heat. These findings illustrate the potential of machine learning in forecasting tomato yield under varying temperature conditions, thereby aiding climate adaptation strategies and agricultural planning.

References

  1. 1. Martí R, Roselló S, Cebolla-Cornejo J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers (Basel). 2016;8(6):58. https://doi.org/10.3390/cancers8060058
  2. 2. Kheyrodin H, Kheyrodin S. Importance of the tomato as such as medical plant. Int J Adv Res Biol Sci. 2017;4(4):106-15.
  3. https://doi.org/10.22192/ijarbs.2017.04.04.014
  4. 3. Mariyappan D, Srividhya S, Vennila MA, Sasikumar K, Senthilkumar T. Study the performance of high yielding tomato hybrids in Dharmapuri District, Tamil Nadu, India. J Adv Biol Biotechnol. 2024;27:1-9. https://doi.org/10.9734/jabb/2024/v27i7993
  5. 4. Malathi G, Kohila P. Evaluation of tomato hybrids in Salem district of Tamil Nadu. J Krishi Vigyan. 2021;10(1):328–31. https://doi.org/10.5958/2349-4433.2021.00115.X
  6. 5. Kurina AB, Solovieva AE, Khrapalova IA, Artemyeva AM. Biochemical composition of tomato fruits of various colors. Vavilov J Genet Breed. 2021;25(5):514–20. https://doi.org/10.18699/VJ21.058
  7. 6. Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, et al. Tomato fruit development and metabolism. Front Plant Sci. 2019;10:1554. https://doi.org/10.3389/fpls.2019.01554
  8. 7. Camejo D, Rodríguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcón JJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol. 2005;162(3):281–9. https://doi.org/10.1016/j.jplph.2004.07.014
  9. 8. Alsamir M, Ahmad NM, Keitel C, Mahmood T, Trethowan R. Identification of high-temperature tolerant and agronomically viable tomato (Solanum lycopersicum) genotypes from a diverse germplasm collection. Adv Crop Sci Technol. 2017;5(110):1–6. https://doi.org/10.4172/2329-8863.1000299
  10. 9. Hazra P, Ansary SH, Dutta AK, Balacheva E, Atanassova B. Breeding tomato tolerant to high temperature stress. Acta Hortic. 2009;830:241–8. https://doi.org/10.17660/ActaHortic.2009.830.33
  11. 10. Berry SZ, Uddin MR. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. HortScience. 1988;23(3):606–8. https://doi.org/10.21273/HORTSCI.23.3.606
  12. 11. Ozores-Hampton M, Kiran F, McAvoy G. Blossom drop, reduced fruit set and post-pollination disorders in tomato. Electronic Data Information Source. 2012;2012(7). https://doi.org/10.32473/edis-hs1195-2012
  13. 12. Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, et al. Impacts, tolerance, adaptation and mitigation of heat stress on wheat under changing climates. Int J Mol Sci. 2022;23(5):2838. https://doi.org/10.3390/ijms23052838
  14. 13. Javadinejad S, Eslamian S, Ostad-Ali-Askari K. The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate. Int J Hydrol Sci Technol. 2021;11(1):1–25. https://doi.org/10.1504/IJHST.2021.112651
  15. 14. Beillouin D, Schauberger B, Bastos A, Ciais P, Makowski D. Impact of extreme weather conditions on European crop production in 2018. Philos Trans R Soc Lond B Biol Sci. 2020;375(1810):20190510. https://doi.org/10.1098/rstb.2019.0510
  16. 15. Reddy DJ, Kumar MR. Crop yield prediction using machine learning algorithm. In: 2021 5th Int Conf Intell Comput Control Syst (ICICCS). IEEE. 2021:1466–70. https://doi.org/10.1109/ICICCS51141.2021.9432236
  17. 16. Hancock PA, Hutchinson MF. Spatial interpolation of large climate data sets using bivariate thin plate smoothing splines. Environ Model Softw. 2006;21(12):1684–94. https://doi.org/10.1016/j.envsoft.2005.08.005
  18. 17. Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40. https://doi.org/10.1007/BF00058655
  19. 18. Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324
  20. 19. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min. 2016:785–94. https://doi.org/10.1145/2939672.2939785
  21. 20. Mayer DG, Butler DG. Statistical validation. Ecol Model. 1993;68(1–2):21–32. https://doi.org/10.1016/0304-3800(93)90105-2
  22. 21. Ku SB, Hunt LA. Effects of temperature on the photosynthesis–irradiance response curves of newly matured leaves of alfalfa. Can J Bot. 1977;55(8):872–9. https://doi.org/10.1139/b77-106
  23. 22. Boote KJ, Rybak MR, Scholberg JM, Jones JW. Improving the CROPGRO-tomato model for predicting growth and yield response to temperature. HortScience. 2012;47(8):1038–49. https://doi.org/10.21273/HORTSCI.47.8.1038
  24. 23. Vijaykumar A, Beena R. Response of tomato quality and yield to elevated temperatures under controlled environment. Int J Environ Clim Change. 2023;13(12):256–71. https://doi.org/10.9734/ijecc/2023/v13i123682
  25. 24. Kuradusenge M, Hitimana E, Hanyurwimfura D, Rukundo P, Mtonga K, Mukasine A, et al. Crop yield prediction using machine learning models: case of Irish potato and maize. Agriculture. 2023;13(1):225. https://doi.org/10.3390/agriculture13010225
  26. 25. Müller F, Xu J, Kristensen L, Wolters-Arts M, de Groot PF, Jansma SY, et al. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One. 2016;11(12):e0167614. https://doi.org/10.1371/journal.pone.0167614
  27. 26. Huang X, Xiao N, Xie Y, Xu C. ROS burst prolongs transcriptional condensation to slow shoot apical meristem maturation and achieve heat-stress resilience in tomato. Dev Cell. 2025. https://doi.org/10.1016/j.devcel.2025.03.007
  28. 27. Haque E, Tabassum S, Hossain E. A comparative analysis of deep neural networks for hourly temperature forecasting. IEEE Access. 2021;9:160646–60. https://doi.org/10.1109/ACCESS.2021.3131533
  29. 28. Crane-Droesch A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ Res Lett. 2018;13(11):114003. https://doi.org/10.1088/1748-9326/aae159
  30. 29. Everingham Y, Sexton J, Skocaj D, Inman-Bamber G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron Sustain Dev. 2016;36:64. https://doi.org/10.1007/s13593-016-0364-z
  31. 30. Jeong JH, Resop JP, Mueller ND, Fleisher DH, Yun K, Butler EE, et al. Random forests for global and regional crop yield predictions. PLoS One. 2016;11(6):e0156571. https://doi.org/10.1371/journal.pone.0156571
  32. 31. Ge J, Zhao L, Yu Z, Liu H, Zhang L, Gong X, et al. Prediction of greenhouse tomato crop evapotranspiration using XGBoost machine learning model. Plants. 2022;11(15):1923. https://doi.org/10.3390/plants11151923
  33. 32. Ayankojo IT, Morgan KT. Increasing air temperatures and its effects on growth and productivity of tomato in South Florida. Plants. 2020;9(9):1245. https://doi.org/10.3390/plants9091245
  34. 33. Nonhebel S. Effects of temperature rise and increase in CO₂ concentration on simulated wheat yields in Europe. Clim Change. 1996;34(1):73–90. https://doi.org/10.1007/BF00139254

Downloads

Download data is not yet available.