Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Aerva lanata extract restores cellular viability and mitochondrial function against gentamicin induced nephrotoxicity on human embryonic kidney cells

DOI
https://doi.org/10.14719/pst.9955
Submitted
10 June 2025
Published
10-09-2025 — Updated on 29-09-2025
Versions

Abstract

Aerva lanata, commonly used in traditional medicine systems such as Ayurveda and Siddha, is well known for its diuretic and lithotriptic properties in the management of urolithiasis and other urinary tract disorders. However, despite its widespread traditional use, comprehensive studies elucidating the nephroprotective mechanisms of A. lanata under conditions of chemically induced renal damage remain limited, warranting further investigation. The current study investigated the nephroprotective properties of ethyl acetate extract of Aerva lanata (EA-AL) against gentamicin induced nephrotoxicity in human embryonic kidney (HEK293) cells. The initial phytochemical evaluation of EA-AL indicated the presence of tannins, which were later quantified. The antioxidant activity of EA-AL was evaluated using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, while its nephroprotective activity was evaluated using the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. The results demonstrated that EA-AL significantly restored cell viability in gentamicin-exposed cells. Gentamicin exposure induced oxidative stress, evidenced by increased lipid peroxidation products and diminished antioxidant enzyme levels. The levels of antioxidant enzymes were effectively elevated and membrane peroxidation was diminished through co-treatment with EA-AL. Moreover, 2', 7’-Dichlorofluorescin diacetate (DCFDA) staining demonstrated that gentamicin exposure led to increased Reactive Oxygen Species ROS production, which was significantly reduced by EA-AL treatment. Exposure to gentamicin led to an elevation in depolarized viable and non-viable cells, indicating a disruption in mitochondrial membrane potential and overall mitochondrial integrity. The co-treatment with EA-AL successfully restored the population of viable cells. The reinstatement of cellular viability and mitochondrial function highlights the nephroprotective potential of EA-AL against imposed toxicity in HEK293cells.

References

  1. 1. Ostermann M, Lumlertgul N, Jeong R, See E, Joannidis M, James M. Acute kidney injury. Lancet. 2025;405(10474):241-56. https://doi.org/10.1016/s0140-6736(24)02385-7
  2. 2. Francis A, Harhay MN, Ong ACM, Tummalapalli SL, Ortiz A, Fogo AB, et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat Rev Nephrol. 2024;20(7):473-85. https://doi.org/10.1038/s41581-024-00820-6
  3. 3. Zuk A, Bonventre JV. Acute kidney injury. Annu Rev Med. 2016;67:293-301. https://doi.org/10.1146/annurev-med-050214-013407
  4. 4. Connor S, Roberts RA, Tong W. Drug-induced kidney injury: Challenges and opportunities. Toxicol Res. 2024;13(4). https://doi.org/10.1093/toxres/tfae119
  5. 5. Tang J, Yang N, Pan S, Ren P, Chen M, Jin J, et al. The renal damage and mechanisms relevant to antitumoral drugs. Front Oncol. 2023;13:1331671. https://doi.org/10.3389/fonc.2023.1331671
  6. 6. Preeja B, Bindhu D, Rani AJ. Pharmacological properties of the plant Aerva lanata - a narrative review. J Clin Diagn Res. 2023. https://doi.org/10.7860/jcdr/2023/64345.18299
  7. 7. Pieczykolan A, Pietrzak W, Gawlik-Dziki U, Nowak R. Antioxidant, anti-inflammatory and anti-diabetic activity of phenolic acids fractions obtained from Aerva lanata (L.) Juss. Molecules. 2021;26(12):3486. https://doi.org/10.3390/molecules26123486
  8. 8. Harborne J. Phytochemical methods: a guide to modern techniques of plant analysis. 5th ed. London: Chapman and Hall; 1998.
  9. 9. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2020;10(3). https://doi.org/10.38212/2224-6614.2748
  10. 10. Kumari PK, Narayanan N. An exploratory study to evaluate the nephro-protective effect of Scoparia dulcis Linn. ethanol extracts in gentamycin induced toxicity in HEK 293 cells. Int J Pharm Sci Rev Res. 2017. https://globalresearchonline.net/journalcontents/v45-2/03.pdf
  11. 11. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988;48(17):4827-33. https://pubmed.ncbi.nlm.nih.gov/3409223/
  12. 12. Ramachandran R, Saraswathi M. Postconditioning with metformin attenuates apoptotic events in cardiomyoblasts associated with ischemic reperfusion injury. Cardiovasc Ther. 2017;35(6). https://doi.org/10.1111/1755-5922.12279
  13. 13. Morales M, Munné-Bosch S. Malondialdehyde assays in higher plants. Methods Mol Biol. 2024;79-100. https://doi.org/10.1007/978-1-0716-3826-2_6
  14. 14. Aebi H. Catalase in vitro. Methods Enzymol. 1984;121-6. https://doi.org/10.1016/s0076-6879(84)05016-3
  15. 15. Salbitani G, Bottone C, Carfagna S. Determination of reduced and total glutathione content in extremophilic microalga Galdieria phlegrea. Bio Protoc. 2017;7(13). https://doi.org/10.21769/bioprotoc.2372
  16. 16. Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician. 2008. https://www.aafp.org/pubs/afp/issues/2008/0915/p743.html
  17. 17. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2010;79(1):33-45. https://doi.org/10.1038/ki.2010.337
  18. 18. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT. 1995;28(1):25-30. https://doi.org/10.1016/s0023-6438(95)80008-5
  19. 19. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 2005;5:12. https://doi.org/10.1186/1472-6750-5-12
  20. 20. Walker PD, Shah SV. Gentamicin enhanced production of hydrogen peroxide by renal cortical mitochondria. Am J Physiol Cell Physiol. 1987;253(4):C495-9. https://doi.org/10.1152/ajpcell.1987.253.4.c495
  21. 21. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192-208. https://doi.org/10.1007/s00018-003-3206-5
  22. 22. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003;66(8):1499-503. https://doi.org/10.1016/s0006-2952(03)00504-5
  23. 23. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291-5. https://doi.org/10.1113/expphysiol.1997.sp004024
  24. 24. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  25. 25. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2):3-8. https://doi.org/10.1016/s0026-0495(00)80077-3
  26. 26. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603-16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  27. 27. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142(2):231-55. https://doi.org/10.1038/sj.bjp.0705776
  28. 28. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297-312. https://doi.org/10.1042/bj20110162
  29. 29. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques. 2011;50(2):98-115. https://doi.org/10.2144/000113610
  30. 30. World Health Organization. Reducing the burden of noncommunicable diseases through promotion of kidney health and strengthening prevention and control of kidney disease. https://apps.who.int/gb/ebwha/pdf_files/EB156/B156_CONF6-en.pdf
  31. 31. World Health Organization. World health statistics 2023: monitoring health for the SDGs, sustainable development goals. https://www.who.int/data/gho/publications/world-health-statistics
  32. 32. Balkrishna A, Sharma N, Srivastava D, Kukreti A, Srivastava S, Arya V. Exploring the safety, efficacy and bioactivity of herbal medicines: bridging traditional wisdom and modern science in healthcare. Future Integr Med. 2024;3(1):35-49. https://doi.org/10.14218/fim.2023.00086
  33. 33. AlAhmad MM, Namer YA, Palaian S, Alomar MJ. A nephrological perspective of herbal remedies on the progression of chronic kidney disease: a systematic review. J Appl Pharm Sci. 2024. https://doi.org/10.7324/japs.2024.148539
  34. 34. Basist P, Parveen B, Zahiruddin S, Gautam G, Parveen R, Khan MA, et al. Potential nephroprotective phytochemicals: mechanism and future prospects. J Ethnopharmacol. 2021;283:114743. https://doi.org/10.1016/j.jep.2021.114743
  35. 35. Ramesh G, Zhang B, Uematsu S, Akira S, Reeves WB. Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. Am J Physiol Renal Physiol. 2007;293(1):F325-32. https://doi.org/10.1152/ajprenal.00158.2007
  36. 36. Tsai HJ, Wu PY, Huang JC, Chen SC. Environmental pollution and chronic kidney disease. Int J Med Sci. 2021;18(5):1121-9. https://doi.org/10.7150/ijms.51594
  37. 37. Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol. 2023;19(1):53-72. https://doi.org/10.1038/s41581-022-00631-7
  38. 38. Ng C, Kim M, Yanti N, Kwak MK. Oxidative stress and NRF2 signaling in kidney injury. Toxicol Res. 2024;41(2):131-47. https://doi.org/10.1007/s43188-024-00272-x

Downloads

Download data is not yet available.