Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Phytochemical analysis, antioxidant and cytotoxicity activities of Clitoria ternatea L. flower aqueous extract against HaCaT cell line

DOI
https://doi.org/10.14719/pst.9994
Submitted
11 June 2025
Published
23-09-2025 — Updated on 06-10-2025
Versions

Abstract

Clitoria ternatea L., traditionally used in Ayurveda is recognized for its antiparasitic and therapeutic properties. However, there is still limited evidence describing its bioactive components and biological activity using aqueous flower extracts relevant to topical and dermatological applications. This study aimed to determine the phytochemical composition, antioxidant potential and cytotoxic effects of Clitoria ternatea L. flower aqueous extract, highlighting its pharmacological relevance and safe application in human skin models. The extract was analysed for total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC) and screened for bioactive using liquid chromatography-mass spectrometry (LC-MS). Antioxidant activity was evaluated using DPPH and FRAP assays, while cytotoxicity against human keratinocyte (HaCaT) cells was assessed through 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. The extract demonstrated high levels of phenolics and flavonoids, recording 114.9 ± 0.47 mg GAE/g and 95.5 ± 0.59 mg QE/g respectively at 1000 µg/mL. TAC was 17.67 ± 5.42 mg/L at 10000 µg/mL. LC-MS identified key antioxidant and antiparasitic compounds including rutin, kaempferol and cyanidin-3-rutinoside. Antioxidant assays revealed moderate activity with IC50 values of 832 ± 10.22 µg/mL (DPPH) and 662 ± 8.32 µg/mL (FRAP), lower than ascorbic acid or gallic acid. The extract showed no cytotoxicity on HaCaT cells at concentrations below 2 mg/mL, supporting its safety for topical use. These findings advance our understanding of Clitoria ternatea L. phytoconstituent profile and support its development for natural skincare or therapeutic applications. Furthermore, the findings also support biodiversity conservation by promoting the sustainable use of medicinal plants.

References

  1. 1. Alnaz ARM, Ridha R, Nasution RFG, Nasution AH, Ichwan W. In vitro study of anthelmintic effect of butterfly pea (Clitoria ternatea) flower aqueous extract on Tubifex tubifex. IOP Conf Ser: Earth Environ Sci. 2021;912:012015. https://doi.org/10.1088/1755-1315/912/1/012015
  2. 2. Islam MA, Mondal SK, Islam S, Shorna A, Most N, Biswas S, et al. Antioxidant, cytotoxicity, antimicrobial activity and in silico analysis of the methanolic leaf and flower extracts of Clitoria ternatea. Biochem Res Int. 2023;2023:8847876. https://doi.org/10.1155/2023/8847876
  3. 3. Hareshbhai PH. Review of herbal plants used in the treatment of skin diseases. J Pharmacogn Phytochem. 2021;10:349–56.
  4. 4. Afrianto WF, Tamnge F, Hasanah LN. Review: a relation between ethnobotany and bioprospecting of edible flower butterfly pea (Clitoria ternatea) in Indonesia. Asian J Ethnobiol. 2020;3:51–61. https://doi.org/10.13057/asianjethnobiol/y030202
  5. 5. Jeyaraj EJ, Lim YY, Choo WS. Extractions method of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. J Food Sci Technol. 2021;58:2054–67. https://doi.org/10.1007/s13197-020-04745-3
  6. 6. Wopereis DB, Bazzo ML, de Macedo JP, Casara F, Golfeto L, Venancio E, et al. Free-living amoebae and their relationship to air quality in hospital environments: characterization of Acanthamoeba spp. obtained from air-conditioning systems. Parasitology. 2020;147:782–90. https://doi.org/10.1017/S0031182020000487
  7. 7. Siddiqui R, Khan NA. Biology and pathogenesis of Acanthamoeba. Parasit Vectors. 2012;5:6. https://doi.org/10.1186/1756-3305-5-6
  8. 8. Sukor NSM, Zakri ZHM, Rasol NE, Salim F. Annotation and identification of phytochemicals from Eleusine indica using high-performance liquid chromatography tandem mass spectrometry: databases-driven approach. Molecules. 2023;28:3111. https://doi.org/10.3390/molecules28073111
  9. 9. Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12:221. https://doi.org/10.1186/1472-6882-12-221
  10. 10. Rao USM, Abdurrazak M, Mohd KS. Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malay J Anal Sci. 2016;20:1181–90. https://doi.org/10.17576/mjas-2016-2005-25
  11. 11. Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants and wines by the pH differential method: collaborative study. J AOAC Int. 2005;88:1269–78. https://doi.org/10.1093/jaoac/88.5.1269
  12. 12. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 2016;34:828–37. https://doi.org/10.1038/nbt.3597
  13. 13. Rosli NL, Roslan H, Omar EA, Mokhtar N, Hapit NHA, Asem N. Phytochemical analysis and antioxidant activities of Trigona apicalis Propolis extract. AIP Conf Proc. 2016;1791:020018. https://doi.org/10.1063/1.4968863
  14. 14. Rumpf J, Burger R, Schulze M. Statistical evaluation of DPPH, ABTS, FRAP and Folin–Ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol. 2023;233:123470. https://doi.org/10.1016/j.ijbiomac.2023.123470
  15. 15. Anwar A, Ting ELS, Anwar A, Ain NU, Faizi S, Shah MR, et al. Antiamoebic activity of plant-based natural products and their conjugated silver nanoparticles against Acanthamoeba castellanii (ATCC 50492). AMB Express. 2020;10:24. https://doi.org/10.1186/s13568-020-0960-9
  16. 16. Muniandy K, Gothai S, Tan WS, Kumar SS, Mohd Esa N, Chandramohan G, et al. In vitro wound healing potential of stem extract of Alternanthera sessilis. Evid Based Complement Alternat Med. 2018;2018:3142073. https://doi.org/10.1155/2018/3142073
  17. 17. Angel YPASR, Jeyakumar P, Suriya JAR, Sheena A, Karuppiah P, Periyasami G, et al. Topical antifungal keratitis therapeutic potential of Clitoria ternatea Linn. flower extract: phytochemical profiling, in silico modelling and in vitro biological activity assessment. Front Microbiol. 2024;15:1343988. https://doi.org/10.3389/fmicb.2024.1343988
  18. 18. Martin-Escolano R, Romero MS, Diaz JG, Marin C, Sanchez-Moreno M, Rosales MJ. In vitro anti-Acanthamoeba activity of flavonoid glycosides isolated from Delphinium gracile, D. staphisagria, Consolida oliveriana and Aconitum napellus. Parasitology. 2021;148:1392–400. https://doi.org/10.1017/S0031182021001025
  19. 19. Vaishnav GV, Chavan GC, Shirsat MK. Formulation and evaluation of antimicrobial gel of Clitoria ternatea (flowers). J Surv Fish Sci. 2023;10:3216–21. https://doi.org/10.53555/sfs.v10i1.1360
  20. 20. Jeyaraj EJ, Lim YY, Choo WS. Antioxidant, cytotoxic and antibacterial activities of Clitoria ternatea flower extracts and anthocyanin-rich fraction. Sci Rep. 2022;12:14890. https://doi.org/10.1038/s41598-022-19146-z
  21. 21. Azahar SS, Raja PB, Ibrahim MNM, Awang K, Zakeyuddin MS, Hamidon TS, et al. Extraction of flavonoids from butterfly blue pea (Clitoria ternatea) flower as carbon steel inhibitor in CO₂ environment: experimental and theoretical approaches. J Mol Liq. 2024;396:124056. https://doi.org/10.1016/j.molliq.2024.124056
  22. 22. Neda GD, Rabeta MS, Ong MT. Chemical composition and anti-proliferative properties of flowers of Clitoria ternatea. Int Food Res J. 2013;20:1229–34.
  23. 23. Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2018;18:2328–75. https://doi.org/10.3390/molecules18022328
  24. 24. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids: a bioactive compound from medicinal plants and its therapeutic applications. Biomed Res Int. 2022;2022:5445291. https://doi.org/10.1155/2022/5445291
  25. 25. Chayaratanasin P, Barbieri MA, Suanpairintr N, Adisakwattana S. Inhibitory effect of Clitoria ternatea flower petal extract on fructose-induced protein glycation and oxidation-dependent damages to albumin in vitro. BMC Complement Altern Med. 2015;15:27. https://doi.org/10.1186/s12906-015-0546-2
  26. 26. Jaafar NF, Ramli ME, Salleh MR. Optimum extraction condition of Clitoria ternatea flower on antioxidant activities, total phenolic, total flavonoid and total anthocyanin contents. Trop Life Sci Res. 2020;31:1–17. https://doi.org/10.21315/tlsr2020.31.2.1
  27. 27. Lakshan SAT, Pathirana CK, Jayanath NY, Abeysekara WPKM, Abeysekara WKSM. Antioxidant and selected chemical properties of the flowers of three different varieties of butterfly pea (Clitoria ternatea L.). Ceylon J Sci. 2020;49:195–201. https://doi.org/10.4038/cjs.v49i2.7740
  28. 28. Destiana ID, Romalasari A, Kurnia N. The effects of extraction period toward anthocyanin levels of blue pea vine (Clitoria ternatea) extract using maceration method. Eksakta Berk Ilm Bid MIPA. 2021;22:283–93. https://doi.org/10.24036/eksakta/vol22-iss4/267
  29. 29. Handayani L, Aprilia S, Arahman N, Bilad MR. Identification of the anthocyanin profile from butterfly pea (Clitoria ternatea L.) flowers under varying extraction conditions: evaluating its potential as a natural blue food colorant and its application as a colorimetric indicator. S Afr J Chem Eng. 2024;49:151–61. https://doi.org/10.1016/j.sajce.2024.04.008
  30. 30. Vifta RL, Trinadi KS, Suratno. Potential of flavonoid content from Clitoria ternatea flowers extract as natural antioxidant candidate and its correlation. Proc Conf Health Univ Ngudi Waluyo. 2022;1:53–60.
  31. 31. Gamage VGC, Lim YY, Choo WS. Anthocyanins from Clitoria ternatea flower: biosynthesis, extraction, stability, antioxidant activity and applications. Front Plant Sci. 2021;12:792303. https://doi.org/10.3389/fpls.2021.792303
  32. 32. Netravati, Gomez S, Pathrose B, N MR, P MJ, Kuruvila B. Comparative evaluation of anthocyanin pigment yield and its attributes from butterfly pea (Clitoria ternatea L.) flowers as prospective food colorant using different extraction methods. Future Foods. 2022;6:100199. https://doi.org/10.1016/j.fufo.2022.100199
  33. 33. Garcia-Viguera C, Zafrilla P, Tomas-Barberan FA. The use of acetone as an extraction solvent for anthocyanins from strawberry fruit. Phytochem Anal. 1998;9:274–7. https://doi.org/10.1002/(SICI)1099-1565(199811/12)9:6
  34. 34. Manjula P, Mohan CH, Sreekanth D, Keerthi B, Devi PB. Phytochemical analysis of Clitoria ternatea Linn., a valuable medicinal plant. J Indian Bot Soc. 2013;92:173–8.
  35. 35. Gutierrez-Venegas G, Fernandez-Rojas B, Rosas-Martinez M, Sanchez-Carballido MA. Rutin prevents LTA induced oxidative changes in H9C2 cells. Prev Nutr Food Sci. 2020;25:203–11. https://doi.org/10.3746/pnf.2020.25.2.203
  36. 36. Alam W, Khan H, Shah MA, Cauli O, Saso L. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules. 2020;25:1–12. https://doi.org/10.3390/molecules25184073
  37. 37. Kongthitilerd P, Thilavech T, Marnpae M, Rong W, Yao S, Adisakwattana S, et al. Cyanidin-3-rutinoside stimulated insulin secretion through activation of L-type voltage-dependent Ca²⁺ channels and the PLC-IP₃ pathway in pancreatic β-cells. Biomed Pharmacother. 2022;146:112494. https://doi.org/10.1016/j.biopha.2021.112494
  38. 38. Rahmani S, Naraki K, Roohbakhsh A, Hayes AW, Karimi G. The protective effects of rutin on the liver, kidneys and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci Nutr. 2022;11:39–56. https://doi.org/10.1002/fsn3.3041
  39. 39. Shahbaz M, Imran M, Momal U, Naeem H, Alsagaby SA, Abdulmonem WA, et al. Potential effects of kaempferol against various malignancies: recent advances and perspectives. Food Agric Immunol. 2023;34:2265690. https://doi.org/10.1080/09540105.2023.2265690
  40. 40. Nair V, Bang WY, Schreckinger E, Andarwulan N, Cisneros-Zevallos L. Protective role of ternatin anthocyanins and quercetin glycosides from butterfly pea (Clitoria ternatea Leguminosae) blue flower petals against lipopolysaccharide (LPS)-induced inflammation in macrophage cells. J Agric Food Chem. 2015;63:6355–65. https://doi.org/10.1021/acs.jafc.5b00928
  41. 41. Roat K, Swarnakar G. Anthelminthic activity of Clitoria ternatea seeds aqueous and alcoholic extracts against Paramphistomum cervi. Int J Innov Res Rev. 2017;5:64–71.
  42. 42. Juswardi, Yuliana R, Tanzerina N, Harmida, Aminasih N. Anthocyanin, antioxidant and metabolite content of butterfly pea flower (Clitoria ternatea L.) based on flowering phase. J Pembelajaran Biol Nukleus. 2023;9:349–60. https://doi.org/10.36987/jpbn.v9i2.4064
  43. 43. Jumina, Siswanta D, Zulkarnain AK, Triono S, Priatmoko, Yuanita E, et al. Development of C-arylcalix [4] resorcinarenes and C-arylcalix [4] pyrogallolarenes as antioxidant and UV-B protector. Indones J Chem. 2019;19:273–84. https://doi.org/10.22146/ijc.26868
  44. 44. Shi L, Zhao W, Yang Z, Subbiah V, Suleria HAR. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res. 2022;29:81112–29. https://doi.org/10.1007/s11356-022-23337-6
  45. 45. Kruszka J, Martynski J, Szewczyk-Golec K, Wozniak A, Nuszkiewicz J. The role of selected flavonoids in modulating neuroinflammation in Alzheimer’s disease: mechanisms and therapeutic potential. Brain Sci. 2025;15:485. https://doi.org/10.3390/brainsci15050485
  46. 46. Bhalke RD, Anarthe SJ. Antinociceptive and antioxidant activity of various parts of Clitoria ternatea (Fabaceae). J Pharm Res. 2009;8:30. https://doi.org/10.18579/jpcrkc/2009/8/1/79784
  47. 47. Lopez-Prado AS, Shen Y, Ardoin R, Osorio LF, Cardona J, Xu Z, et al. Effects of different solvents on total phenolic and total anthocyanin contents of Clitoria ternatea L. petal and their anti-cholesterol oxidation capabilities. Int J Food Sci Technol. 2019;54:424–31. https://doi.org/10.1111/ijfs.13953
  48. 48. Planz V, Lehr CM, Windbergs M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Control Release. 2016;242:89–104. https://doi.org/10.1016/j.jconrel.2016.09.002
  49. 49. Shivaprakash P, Balaji KS, Chandrashekara KT, Rangappa KS, Jayarama S. Induction of apoptosis in MCF-7 cells by methanolic extract of Clitoria ternatea L. Int J Appl Biol Pharm. 2015;6:80–6.
  50. 50. Kumar BS, Bhat KI. In-vitro cytotoxic activity studies of Clitoria ternatea Linn. flower extracts. Int J Pharma Sci Rev Res. 2011;6(2):120–1.

Downloads

Download data is not yet available.