Skip to main navigation menu Skip to main content Skip to site footer

Research communications

Vol. 1 No. 1 (2014)

Accumulation of class-III type of boiling stable Peroxidases in response to plant growth hormone ABA in <em>Triticum aestivum</em> cultivars

DOI
https://doi.org/10.14719/pst.2014.1.1.6
Submitted
28 October 2013
Published
01-01-2014

Abstract

Abscisic acid (ABA) is a key plant growth and stress hormone involved in many biological processes. It has been shown to be involved in Reactive Oxygen Species (ROS) generation. Class-III Peroxidases (PODs) are known to maintain oxidative stress induced-ROS at sub-lethal levels in plants under abiotic stress conditions, but, studies documenting how ABA regulates boiling stable class-III PODs are still a matter of conjuncture. In this study, the ABA-induced changes on ROS and ROS scavenging class III boiling stable POD were studied in the embryos of different cultivars of wheat. Simultaneous analysis of ROS contents, activities of ROS-scavenging class- III boiling stable POD enzymes gave an integrative view of physiological state and detoxifying potential under conditions of sensitivity and tolerance. Indices of oxidative stress viz., superoxide radical and H2O2 content increased under ABA treatment in a genotype dependent manner. It was observed that cultivars :PBW 550, HD 2967 and PBW 621 have more efficient mechanism to scavenge ROS species as shown by increase in BsPOD activity accompanied by enhanced expression of boiling stable POD isoenzymes. Based on results it can be inferred that embryos of cvs. PBW 550, HD 2967 and PBW 621 have more capacity to perform biological antioxidative reactions to combat ABA-induced oxidative stress.

References

  1. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55, 373-399. http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701
  2. Bano, A., Ullah, F., & Nosheen, A. (2012). Role of Abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ, 58, 181-185.
  3. Baruah A., Simkova K., Apek K., & Laloi C. (2009). Arabidopsis mutants reveal multiple singlet oxygen signalling pathway involved in stress response and development. Plant Biol, 70, 547-563.
  4. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A., A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant Physiol, 148, 6-24. http://dx.doi.org/10.1104/pp.108.120725
  5. Bi, Y., H., Chen, W., L., Zhang, W., N., Zhou, Q., Yun, L., J., & Xing, D. (2009). Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium induced cell death in Arabidopsis thaliana. Biol Cell, 101, 629–643. http://dx.doi.org/10.1042/BC20090015
  6. Chakrabarty, D., Verma, A., K., & Datta, S., K. (2009). Oxidative stress and antioxidant activity as the bassenescence in Hemerocallis (day lily) flowers. J Hortic Forestry, 1, 113-119.
  7. Chance, B., & Maehly, A. (1955). Assay of catalases and peroxidases. Methods Enzymol, 2, 764–775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8
  8. Cosio, C., & Dunand, C. (2010). Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana. BMC Genomics, 11, 528. http://dx.doi.org/10.1186/1471-2164-11-528
  9. Fincher, G., B. (1989). Molecular and cellular biology association with endosperm mobilization in germination cereal grains. Annu Rev Plant Physiol Plant Mol Biol, 40, 305-346. http://dx.doi.org/10.1146/annurev.pp.40.060189.001513
  10. Gao, C., J., Xing, D., Li, L., & Zhang, L., R. (2008). Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta, 227, 755–767. http://dx.doi.org/10.1007/s00425-007-0654-4
  11. Gill, S., S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48, 909-930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016
  12. Goel, A., & Sheoran, I., S. (2003). Lipid peroxidation and peroxide scavenging enzymes in cotton seeds under natural ageing. Biol Plant, 46, 429-434. http://dx.doi.org/10.1023/A:1024398724076
  13. Graper, C., & Dolan, L. (2006). Control of plant development by Reactive Oxygen Species. Plant Physiol, 141, 341-345. http://dx.doi.org/10.1104/pp.106.079079
  14. Heath, R., L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I-Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophy 125, 189–198. http://dx.doi.org/10.1016/0003-9861(68)90654-1
  15. Hu, X., Jiang, M., Zhang, A., & Lu, J. (2005). Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 223, 57–68. http://dx.doi.org/10.1007/s00425-005-0068-0
  16. IARI (2013). Retrieved from http:// www.iari.res.in
  17. Jacobsen, J., V., & Shaw, D., C. (1989). Heat-stable proteins and Abscisic acid action in barley aleurone cells. Plant Physiol, 91, 1520-1526. http://dx.doi.org/10.1104/pp.91.4.1520
  18. Jiang, M., & Zhang, J. (2002). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 53, 2401–2410. http://dx.doi.org/10.1093/jxb/erf090
  19. Lal, S. (2010). Guidelines for selection of improved varieties/hybrids of rice, wheat and pulses for NFSM states. Department of Agriculture and Cooperation Ministry of Agriculture Government of India Krishi Bhawan, New Delhi-110001.
  20. Li, L., & Yi, H. (2012). Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol Biochem, 58, 46-53. http://dx.doi.org/10.1016/j.plaphy.2012.06.009
  21. Lowry, O., H., Rosebrough, N. J., Farr, A., L., & Randall, R., J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193, 265–275.
  22. Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signalling and abiotic stress. Plant Physiol, 133, 481–489. http://dx.doi.org/10.1111/j.1399-3054.2008.01090.x
  23. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 7, 405-410. http://dx.doi.org/10.1016/S1360-1385(02)02312-9
  24. Navari-Izzo, F., Pinzino, C., Quartacci, M., F., & Sgherri, C., L., M. (1999). Superoxide and hydroxyl radical generation, and superoxide dismutase in PS II membrane fragments from wheat. Free Radical Res, 31, S3-9. http://dx.doi.org/10.1080/10715769900301251
  25. Ozkur, O., Ozdemir, F., Bor, M., & Turkan, I. (2009). Physiochemical and Antioxidant Responses of the Perennial Xerophyte Capparisovata Desf. to Drought. Environ Exp Bot, 66, 487–492. http://dx.doi.org/10.1016/j.envexpbot.2009.04.003
  26. Pelah, D., Shoseyov, O., & Altman, A. (1995). Characterization of BspA, a major boiling stable water stress responsive protein in aspen (Populus tremula). Tree Physiol, 15, 673-678. http://dx.doi.org/10.1093/treephys/15.10.673
  27. Pinheiro, C., Passarinho, J., A., & Ricardo, C., P. (2004). Effect of drought and re-watering on metabolism of Lupinus albus organs. Plant Physiol, 124, 17-20.
  28. Sambrook, J., Fritsch, E., F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual, pp 18.64-18.75. New York: Cold Spring Harbour Laboratory Press.
  29. Sharma, A., D., Rakhra, G., & Singh, J. (2012). Expression analysis of BsAPase14 acid phosphatase, a stress responsive boiling-stable protein from Triticum aestivum. J Crop Sci Biotech, 15, 41-45. http://dx.doi.org/10.1007/s12892-011-0054-y
  30. Sharma, A., D., Vasudeva, R., & Kaur, R. (2006). Expression of a boiling-stable protein (BsCyp) in response to heat shock, drought and ABA treatments in Sorghum bicolor. Plant Growth Regulation, 50, 249-254. http://dx.doi.org/10.1007/s10725-006-9134-2
  31. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., & Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 53, 1305-19. http://dx.doi.org/10.1093/jexbot/53.372.1305
  32. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot, 58, 221-227. http://dx.doi.org/10.1093/jxb/erl164
  33. Sidel, P., S. (1986). Software Reviews: Statview, Version 1.0. BrainPower Inc., 24009 Ventura Blvd. Social Science Computer Review, 4, 232-237. http://dx.doi.org/10.1177/089443938600400211
  34. Wang, W., B., Kim, Y., H., Lee, H., S., Kim, K., Y., Deng, X., P. & Kwak, S., S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stress. Plant Physiol Biochem, 47, 570-577. http://dx.doi.org/10.1016/j.plaphy.2009.02.009

Downloads

Download data is not yet available.