Drought stress mitigation in Vigna radiata by the application of root-nodulating bacteria

  • Diksha Kumari Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
  • Dipjyoti Chakraborty Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India

Abstract

Plant growth promoting rhizobacteria (PGPR) facilitates plant growth and are of potential use as bio-fertilizer. Pulses are an important protein source in the vegetarian diet and being legumes harbour members of the Rhizobiaceae that form symbiotic relationships and nodules involved in nitrogen fixation. Vigna radiata is one such pulse crop popular in India. Nodulating bacteria were also found to mitigate biotic and abiotc stress and may be used as an alternative to chemical fertilizer for a sustainable agriculture. Here, we review rhizobial species isolated from V. radiata that have offered an efficient drought stress tolerance. 

Downloads

Download data is not yet available.

Author Biography

Dipjyoti Chakraborty, Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India

Associate Professor in Department of Bioscience and Biotechnology, Banasthali University (June 2013 to date)

References

1. Glick B R. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 1995;41:109-117. doi: 10.1139/m95-015

2. Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce A N. Role of plant growth promoting rhizobacteria in agricultural sustainability - A Review. Molecules 2016;21(5):573. doi: 10.3390/molecules21050573

3. Vessey J K, Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255:571- 586. doi: 10.1023/A:1026037216893

4. Sruthilaxmi C B, Babu S. Microbial bio-inoculants in Indian agriculture: Ecological perspectives for a more optimized use. Agric. Ecosyst. Environ. 2017;242:23-25. doi: 10.1016/j.agee.2017.03.019

5. Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 2006;24(4):487-506. doi: 10.1111/j.1574-6976.2000.tb00552.x

6. Liu K, Newman M, McInroy J A, Hu C H, Kloepper J W. Selection and Assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phtopathol. 2017;107(8):928-936. doi: 10.1094/PHYTO-02-17-0051-R

7. Ngumbi E, Kloepper J. Bacterial-mediated drought tolerance: current and future prospects. Appl. Soil Ecol. 2016;105:109-125. doi: 10.1016/j.apsoil.2016.04.009

8. Vurukonda S S K P, Vardharajula S, Shrivastava M, Skz A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016;184:13-24. doi: 10.1016/j.micres.2015.12.003

9. Wallenstein M D. Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere. 2017;3(2):230-232. doi: 10.1016/j.rhisph.2017.04.004

10. Ahemad M and Kibret M. Mechanisms, applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 2014;26(1):1-20. doi: 10.1016/j.jksus.2013.05.001

11. Kuan K B, Othman R, Rahim K A, Shamsuddin Z H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 2016;11(3):e0152478. doi: 10.1371/journal.pone.0152478

12. Ali M A, Abbas A, Awan S I, Jabran K, Gardezi S D A. Correlated response of various morpho-physiological characters with grain yield in sorghum land races at different growth phases. J. Anim. Plant Sci. 2011;21(4):671-679.

13. Rajendran R A, Muthiah A R, Manickam A, Shanmugasundaram P, Joel A J. Indices of drought tolerance in sorghum (Sorghum bicolor L. Moench) genotypes at early stages of plant growth. Res. J. Agric. Biol. Sci. 2011;7:42-46.

14. Rajpoot P and Panwar K S. Isolation, characterization of rhizobia and their effect on Vigna radiata plant. Octa. J. Biosci. 2013;1(1):69-76.

15. Neeraj, Gaurav S S, Chatterjee S C, Sachin, Chandra M. Efficient nitrogen fixing rhizobial isolate infecting Vigna radiata I. Asian J. Agric. Sci. 2009;1(2):62-65.

16. Bhatt S, Vyas R V, Shelat H N, Mistry S J. Isolation and identification of root nodule bacteria of mung bean (Vigna radiata L.) for biofertilizer production. Int.J. Res. Pure App. Microbiol. 2013;3(4):127-133.

17. Geetha K, Venkatesham E, Hindumathi A, Bhadraiah B. Isolation, screening and characterization of plant growth promoting bacteria and their effect on Vigna radiata (L.) R.Wilczek. Int. J. Curr. Microbiol. App. Sci. 2014;3(6):799-809.

18. Zahir ZA, Shah MK, Naveed M, Akhter MJ. Substrate-dependent auxin production by rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J. Microbiol. Biotechnol. 2010;20(9):1288–1294. doi: 10.4014/jmb.1002.02010

19. Mondal H K, Mehta S, Kaur H, Gera R. Characterization of abiotic stress tolerant rhizobia as PGPR of mothbean, clusterbean and mungbean grown in hyper-arid zone of Rajasthan. Int. J. Bioresour. Stress Manage., 8(2):309-315.
Published
2017-12-04
How to Cite
KUMARI, Diksha; CHAKRABORTY, Dipjyoti. Drought stress mitigation in Vigna radiata by the application of root-nodulating bacteria. Plant Science Today, [S.l.], v. 4, n. 4, p. 209-212, dec. 2017. ISSN 2348-1900. Available at: <http://horizonepublishing.com/journals/index.php/PST/article/view/343>. Date accessed: 17 dec. 2017. doi: https://doi.org/10.14719/pst.2017.4.4.343.
Section
Mini Reviews