A review on molecular techniques employed for authentication of Indian medicinal plants

Authors

  • Rubeena Mattummal Department, of Pharmacognosy, Siddha Central Research Institute, Chennai 600 106, India
  • Divya Kallingilkalathil Gopi Department, of Pharmacognosy, Siddha Central Research Institute, Chennai 600 106, India
  • Erni Bobbili Department, of Pharmacognosy, Siddha Central Research Institute, Chennai 600 106, India
  • Sunil Kumar Koppala Narayana Department, of Pharmacognosy, Siddha Central Research Institute, Chennai 600 106, India

DOI:

https://doi.org/10.14719/pst.2019.6.4.588

Keywords:

Adulteration, Plant barcoding, RAPD, RFLP, SCAR, AFLP

Abstract

Traditional medical systems are advancing to the level of modern medicines in treatment and preventive aspects. The increased trade in medicinal plants provides income source for herbalists while substitution of rare ingredients with cheaper and more readily available species is misleading the end users. The prime cause of the problems associated with the standardization of medicinal plants is complex composition of herbal drugs used in the form of whole plants, plant parts or extracts. Deliberate adulteration of intended ingredients are posing difficulty in distinguishing the genuine resources. Authentication of medicinal plants by recent molecular techniques is inevitable for herbal drug industries, researchers and academia. Of late, herbal genomics, molecular studies of medicinal plants and powerful next generation sequencing techniques have been emerged to transform the current knowledge. A compilation of various molecular markers used, their efficiency in barcoding for the purpose of accurate authentication of herbal drugs has been attempted in this study. Data were collected from previous literature and online repositories like NCBI, Pubmed etc. There are various molecular techniques that can be exploited for authentication of medicinal plants such as Restriction Fragment Length Polymorphism (RFLP), Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), Sequence Characterized Amplified Region (SCAR), Selective Amplification of Microsatellite polymorphic loci (SAMPL), Simple Sequence Repeats (SSR), Inter Simple Sequence Repeat (ISSR), DNA barcoding, Next Generation Sequencing Techniques etc. Some of medicinal plants were reported having molecular data useful in plant identification. The genomic data of poly herbal formulations helps for scientific validation and universal recognition. Even though the challenges associated with reprehensibility, primer designing, amplification products of molecular markers and troubles related with DNA isolation and purification, become the major obstacle in front of researchers. It is high time to focus these novel strategies for proper identification to ensure the fidelity of traditional herbal products and there by promoting a step towards the global acceptance of our indigenous medicinal systems.

Downloads

Download data is not yet available.

References

1. Daniels RR. Taxonomic uncertainties and conservation assessment of the Western Ghats. Curr Sci. 1997;73(2):169-70.

2. Balasubramani SP, Goraya GS, Venkatasubramanian P. Development of ITS sequence-based markers to distinguish Berberis aristata DC. from B. lyceum Royle and B. asiatica Roxb. 3 Biotech. 2011;(1):11-19. https://doi.org/10.1007/s13205-010-0001-5

3. WHO traditional medicine strategy. Geneva: World Health Organization Geneva; 2002.

4. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et. al., Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5(1):8613. https://doi.org/10.1371/journal.pone.0008613

5. Vaidyanathan V, Naidu V, Jabed A, Tran K, Kallingappa P, Kao CH, et. al. Modern molecular biology technologies and higher usability of ancient knowledge of medicinal plants for treatment of human diseases. In Plant and Human Health, Volume 2 2019; pp. 173-205. Springer, Cham. https://doi.org/10.1007/978-3-030-03344-6_7

6. Tripathi AM, Tyagi A, Kumar A, Singh A, Singh S, Chaudhary LB, Roy S. The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS One. 2013;8(2):e57934. https://doi.org/10.1371/journal.pone.0057934

7. Ragupathy S, Newmaster SG, Murugesan MVB. DNA barcoding discriminates a new cryptic grass species revealed in an ethnobotany study by the hill tribes of the Western Ghats in southern India. Mol Ecol Resour. 2009;l9:164–71. https://doi.org/10.1111/j.1755-0998.2009.02641.x

8. Ganie SH, Upadhyay P, Das S, Sharma MP. Authentication of medicinal plants by DNA markers. Plant Gene. 2015;4:83-99. https://doi.org/10.1016/j.plgene.2015.10.002

9. Chawla H. Introduction to Plant Biotechnology (3/e). CRC Press; 2011.https://doi.org/10.1201/9781315275369-1

10. Zhou J, Wang W, Liu M, Liu Z. Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA -barcoding technique. Pharmacogn Mag. 2014;10: 385–90. https://doi.org/10.4103/0973-1296.141754

11. Warburton ML, Zianchun X, Crossa J, Frnaco J, Melchinger AE, Frisch M, et. al., Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci. 2002;42:1832–40. https://doi.org/10.2135/cropsci2002.1832

12. Zietkiewicz E, Rafalski A,Labuda D. Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics. 1994;20: 176-183. https://doi.org/10.1006/geno.1994.1151

13. Vijayan K. Inter simple sequence repeats (ISSR) polymorphism and its application in mulberry genome analysis. Int J Indust Entomol. 2005;10(2):79-86.

14. Rakoczy-Trojanowska M, Bolibok H. Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cell Mol Biol Lett. 2004;9(2):221-38.

15. Morgante M, Vogel JM, inventors; EI du Pont de Nemours and Co, assignee. Compound microsatellite primers for the detection of genetic polymorphisms. United States patent US 5,955,276. 1999.

16. CBOL. Plant working group a DNA barcode for land plants. Proc Natl Acad Sci USA. 2009;106:12794–97.

17. Cameron, KM, Chase MW. Phylogenetic relationships of Pogoniinae (Vanilloideae, orchidaceae): an herbaceous example of the eastern North America–eastern Asia phytogeographic disjunction. Journal of Plant Research.1999;112:317–29. https://doi.org/10.1007/PL00013873

18. Li XK, Wang B, Han RC, Zheng YC, Yin HB, Xu L, et. al., Identification of medicinal plant Schisandra chinensis using a potential DNA barcode ITS2. Acta Societatis Botanicorum Poloniae. 2013;82(4):283–88. https://doi.org/10.5586/asbp.2013.032

19. Daniels M, Goh F, Wright CM, Sriram KB, Relan V, Clarke BE, et. al., Whole genome sequencing for lung cancer. Journal of thoracic disease. 2012;4(2):155.

20. Egan AN, Schlueter J, Spooner DM. Applications of next?generation sequencing in plant biology. AmJ Bot. 2012;99(2):175-85. https://doi.org/10.3732/ajb.1200020

21. Metzker ML. Sequencing technologies — The next generation. Nature Reviews Genetics. 2010;11 : 31 – 46. https://doi.org/10.1038/nrg2626

22. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identification through DNA barcodes. Proc R Soc Lond B Biol Sci. 2003;270:313–21. https://doi.org/10.1098/rspb.2002.2218

23. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R.Towards writing the encyclopedia of life: an introductin to DNA barcoding. Philos Trans R Soc Lond B Biol Sci. 2005;360:1805–11. https://doi.org/10.1098/rstb.2005.1730

24. Ratnasingham S, Hebert PDN.BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes.2007;7:355–64. https://doi.org/10.1111/j.1471-8286.2007.01678.x

25. Hillis DM. Molecular versus morphological approaches to systematics. Annu Rev Ecol Syst. 1987 Nov;18(1):23-42. https://doi.org/10.1146/annurev.es.18.110187.000323

26. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA. 2005;102: 8369–74. https://doi.org/10.1073/pnas.0503123102

27. Newmaster SG, Fazekas AJ, Ragupathy S.DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot/Rev Can Bot. 2006;84: 335–41. https://doi.org/10.1139/b06-047

28. Chen S, Pang X, Song J, Shi L, Yao H, Han J, Leon C. A renaissance in herbal medicine identification: from morphology to DNA. Biotechnology Advances. 2014;32(7):1237-44. https://doi.org/10.1016/j.biotechadv.2014.07.004

29. Hao DC, Chen SL, Xiao PG. Authentication of medicinal plants based on molecular biology and genomics. Pharma Biotechnol. 2009;16:490-4.

30. Khan S, Mirza KJ, Abdin MZ. Development of RAPD markers for authentication of medicinal plant Cuscuta reflexa. EurAsia J BioSci. 2010;4:1–7. https://doi.org/10.5053/ejobios.2010.4.0.1

31. Azam S, Thakur V, Ruperao P, Shah T, Balaji J, et al. Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results for the identifi cation of SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot. 2012;99:186–92. https://doi.org/10.3732/ajb.1100419

32. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, et. al. Using next?generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot. 2012;99(2):193-208.https://doi.org/10.3732/ajb.1100394

33. Ali Z, Ganie SH, Narula A, Sharma MP, Srivastava PS. Intra-specific genetic diversity and chemical profiling of different accessions of Clitoria ternatea L. Ind Crop Prod. 2013;43,768–773. https://doi.org/10.1016/j.indcrop.2012.07.070

34. Ganie SH, Sharma MP. Molecular and chemical profiling of different populations of Evolvulus alsinoides (L.) L. International Journal of Agriculture and Crop Sciences. 2014;7:1322–31.

35. Vijayan D, Cheethaparambil A, Pillai GS, Balachandran I. Molecular authentication of Cissampelos pareira L. var. hirsuta (Buch.-Ham. ex DC.) Forman, the genuine source plant of ayurvedic raw drug ‘Patha’, and its other source plants by ISSR markers. Biotech. 2014;4:559–62.https://doi.org/10.1007/s13205-013-0183-8

36. Kesanakurthi RP, Fazekas AJ, Burgess KS, Percy DM, Newmaster SG, et. al., Spatial patterns of plant diversity below ground as revealed by DNA barcoding. Molecular Ecology. 2011;20:1289–1302. https://doi.org/10.1111/j.1365-294X.2010.04989.x

37. Staudacher K, Wallinger C, Schallhart N, Traugott M. Detecting ingested plant DNA in soil-living insect larvae. Soil Biol Biochem. 201;43:346–50. https://doi.org/10.1016/j.soilbio.2010.10.022

38. Stech M, Kolvoort E, Loonen MJJE, Vrieling K, Kruijer JD. Bryophyte DNA sequences from faeces of an arctic herbivore, barnacle goose (Brantaleucopsis). Mol Ecol Resour. 2011;11:404–08. https://doi.org/10.1111/j.1755-0998.2010.02938.x

39. Jaakola L, Suokas M, Ha¨ggman H. Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chemistry. 2010;123:494-500. https://doi.org/10.1016/j.foodchem.2010.04.069

40. Srirama R, Senthilkumar U, Sreejayan N, Ravikanth G, Gurumurthy BR, et. al., Assessing species admixtures in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools. J Ethnopharmacol. 2010;130: 208–15. https://doi.org/10.1016/j.jep.2010.04.042

41. Harmon L. Rare flowers and common herbal supplements get unmasked with plant DNA barcoding (reporting unpublished data of Damon Little and David Baker). Scientific American Observations. 2010. Available: http://www.scientificamerican.com /blog/post.cfm?id=rare-flowers-and-common-herbalsupp-2010-04-18

42. Frigerio J, Gorini T, Galimberti A, Bruni I, Tommasi N, Mezzasalma V, Labra M. DNA barcoding to trace Medicinal and Aromatic Plants from the field to the food supplement. J Appl Bot Food Qual. 2019;92:33-38.

43. Sgamma T, Lockie-Williams C, Kreuzer M, Williams S, Scheyhing U, Koch E, et. al., DNA barcoding for indus­trial quality assurance. Planta Med. 2017;83(14/15), 1117-29.https://doi.org/10.1055/s-0043-113448

44. Valentini P, Galimberti A, Mezzasalma V, DeMattia F, Casiraghi M, Labra M, et. al., DNA barcoding meets nanotechno-logy: Development of a Universal Colorimetric Test for Food Authen-tication. Angew Chem Int Ed Engl2017;56(28), 8094-98. https://doi.org/10.1002/anie.201702120

45. Sharma V, Sarkar IN. Bioinformatics opportunities for identification and study of medicinal plants. Briefings in bioinformatics. 2012;14(2):238-50. https://doi.org/10.1093/bib/bbs021

46. Youns M, Hoheisel JD, Efferth T. Toxicogenomics for the prediction of toxicity related to herbs from traditional Chinese medicine. Planta Med. 2010 ;76:2019–25. https://doi.org/10.1055/s-0030-1250432

47. Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens?Mack J, Pires JC. Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. Am J Bot. 2012;99(2):330-48. https://doi.org/10.3732/ajb.1100491

48. ChenS, Song J, Sun C, Xu, J, Zhu Y, Verpoorte R, et. al., genomics: examining the biology of traditional medicines. Science. 2015;347:527-29.

49. Chakraborty P. Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochim Open. 2018;6:9-16. https://doi.org/10.1016/j.biopen.2017.12.003

50. Chen S, Xu J, Liu C. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun. 2012;3:913-22. https://doi.org/10.1038/ncomms1923

51. Giddings LA. A stereo selective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. Journal of Biological Chemistry. 2011;286:16751-57. https://doi.org/10.1074/jbc.M111.225383

52. Rastogi S, Kalra A, Gupta V. Unravelling the genome of Holy basil an incomparable “elixir of life” of traditional Indian medicine. BMC Genomics. 2015;16:413-31. https://doi.org/10.1186/s12864-015-1640-z

53. Shivaraj Y, Govind S, Jogaiah S, Sannaningaiah D. Functional analysis of medicinal plants using system biology approaches. International Journal of Pharmacy and Pharmaceutical Sciences.2015;7:41-43.

54. Li Y, Xu, C, X. Lin De X.De novo assembly and characterization of the fruit transcriptome of Chinese Jujuba (Zizipus jujuba Mill) using 454 pyrosequencing and the development of novel trinucleotide SSR markers. PLoS One. 2014. https://doi.org/10.1371/journals.Pone.0106438

55. Franke J, Kim J, Hamilton JP, Zhao D, Pham GM, Wiegert?Rininger K, et. al., Gene discovery in Gelsemium highlights conserved gene clusters in monoterpene indole alkaloid biosynthesis. Chembio chem. 2019;20(1):83-87.https://doi.org/10.1002/cbic.201800592

56. Hoopes GM, Hamilton JP, Kim J, Zhao D, Wiegert-Rininger K, Crisovan E, Buell CR. Genome Assembly and Annotation of the Medicinal Plant Calotropis gigantea, a Producer of Anticancer and Antimalarial Cardenolides. G3: Genes, Genomes, Genetics. 2018;8(2):385-91. https://doi.org/10.1534/g3.117.300331

57. Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B. De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascience. 2017;6(9):gix065. https://doi.org/10.1093/gigascience/gix065

58. Oshingboye AD, Ogundipe OT,Culham A. Direct Submission in NCBI; Department of Botany, University of Lagos, Molecular Systematics Laboratory, Akoka, Yaba, Lagos 23401, Nigeria. Submitted: 23-May-2016.

59. Gill A and Kaur R. Direct Submissionin NCBI; Botany, Punjabi University, Punjabi University Campus, Patiala, Punjab 147002, India. Submitted:17-Sep-2015.

60. Ndoye-Ndir K, Samb PI, Chevallier MH. Genetic variability analysis of the polyploid complex of Acacia nilotica (L.) Willd. Using RAPD markers. SOMMAIRE/INHOUD/SUMARIO.. 2008;26(3):135-40.

61. Misra A, Shukla AK, Shasany AK, Sundaresan V, Jain SP, Singh SC, et. al. AFLP markers for identification of Aconitum species. Med Aromat Plant Sci Biotechnol.2010;4:15-9.

62. Nayak D, Singh DR, Sabarinathan P, Singh S, Nayak T. Random amplified polymorphic DNA (RAPD) markers reveal genetic diversity in bael (Aegle marmelos Correa) genotypes of Andaman Islands, India. African Journal of Biotechnology. 2013;12(42).https://doi.org/10.5897/AJB2013.12473

63. Sheth BP and Thaker VS. Direct Submission in NCBI; Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005, India. Submitted: 20-Jan-2016.

64. Aparajita S, Rout GR. Genetic differentiation of Albizia lebbeck (L.) Benth. populations estimated by RAPD and ISSR markers. Plant Biosyst. 2009 Jul 1;143(2):361-8. https://doi.org/10.1080/11263500902722683

65. Al-Zahim M, Newbury HJ, Ford-Lloyd BV. Classification of genetic variation in garlic (Allium sativum L.) revealed by RAPD. Hort Science. 1997;32(6):1102-04. https://doi.org/10.21273/HORTSCI.32.6.1102

66. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A. 2005 Jun 7;102:8369–74. https://doi.org/10.1073/pnas.0503123102

67. Sucher NJ, Carles MC. Genome-based approaches to the authentication of medicinal plants. Planta Med. 2008;74(06):603-23. https://doi.org/10.1055/s-2008-1074517

68. Ray T, Roy SC. Genetic diversity of Amaranthus species from the Indo-Gangetic plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. Journal of heredity. 2008;100(3):338-47. https://doi.org/10.1093/jhered/esn102

69. Mathew KM, Jose S, Rao YS, Gupta U, Thomas J. Optimization of genomic DNA extraction from fresh and dry leaves of large cardamom (Amomum subulatum Roxb.) for diversity analysis. Indian journal of biotechnology. 2014;13(2):221-4.

70. Malhotra SK. Plant genetic resources of seed spices in India. Seed Spices Newsletter 2003;3(1):1-4.

71. Feng T, Li Q, Wang Y, et. al. Phylogenetic analysis of Aquilaria Lam. (Thymelaeaceae) based on DNA barcoding. Holzforschung. 2008;73(6)517-24.

72. Wanke S, Jaramillo MA, Borsch T, Samain MS, Quandt D, Neinhuis C. Evolution of Piperales - matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Mol Phylogenet Evol. 2007;42(2):477-97.

73. Vijay N, Sairkar P, Silawat N, Garg RK, Mehrotra NN. Genetic variability in Asparagus racemosus (Willd.) from Madhya Pradesh, India by random amplified polymorphic DNA. African Journal of Biotechnology. 2009;8(14).

74. Singh A, Chaudhury A, Srivastava PS, Lakshmikumaran M. Comparison of AFLP and SAMPL markers for assessment of intra-population genetic variation in Azadirachta indica A. Juss. Plant Science. 2002;162(1):17-25. https://doi.org/10.1016/S0168-9452(01)00503-9ss

75. Darokar MP, Khanuja SP, Shasany AK, Kumar S. Low levels of genetic diversity detected by RAPD analysis in geographically distinct accessions of Bacopa monnieri. Genet Resour Crop Evol. 2001;48(6):555-8. https://doi.org/10.1023/A:1013800101604

76. Meenakshi K, Jamkhedkar S, George IA. Molecular profiling of some Barleria species using rbcL, matK gene sequences and RAPD markers. Journal of Applied Horticulture. 2016;18(3):203-206, 016.

77. Chen ZD, Yang T, Lin L, Lu LM, Li H, et. al.,, Direct Submission in NCBI;China Phylogeny Consortium, State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Haidian District, Beijing 100093, P. R China. Submitted 11-JUL-2016; Tree of life for the genera of Chinese vascular plants; J Syst Evol. 2006;54 (4), 277-306.

78. Allen, JM, Germain-Aubrey CC, Barve N, Neubig KM, Majure LC, Laffan SW, et. al. Spatial Phylogenetics of Florida Vascular Plants: The Effects of Calibration and 243 Uncertainty on Diversity Estimates. iScience 2019;11: 57-70.

79. Padmalatha K, Prasad MN. Optimization of DNA isolation and PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from Peninsular India. African Journal of Biotechnology. 2006;5(3):230-4.

80. Kandasamy TH, Kumari KA, Kaprakkaden AN, Lohot VD, Ghosh J. Molecular diversity analysis of flower colour variants of Butea monosperma (lam.) Taub using Inter Simple Sequence Repeats. Bioscan. 2013;8(3):969-74.

81. Gilmore S, Peakall R, Robertson J. Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations. Forensic sci int. 2003 ;131(1):65-74. https://doi.org/10.1016/S0379-0738(02)00397-3

82. Sheeba MS, Muneeb Hamza KH, Krishna Radhik N, Asha VV. Molecular diversities among Cardiospermum halicacabum Linn. populations in Kerala assessed using RAPD markers. Ann Phytomed. 2014;3(2):87-92.

83. Khan MA, von Witzke-Ehbrecht S, Maass BL, Becker HC. Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genet Resour Crop Evol. 2009 Feb 1;56(1):19-30. https://doi.org/10.1007/s10722-008-9338-6

84. Raju NL, Prasad MN. Genetic diversity analysis of Celastrus paniculatus Willd. a nearly threatened, cognitive and intelligence enhancer by RAPD markers. Funct Plant Sci Biotechnol. 2007;1(1):195-99.

85. Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR. Genetic relationship among 19 accessions of six species of Chenopodium L., by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica. 1999;105(1):25-32. https://doi.org/10.1023/A:1003480414735

86. Sigmon BA, Adams RP, Mower JP. Complete chloroplast genome sequencing of vetiver grass(Chrysopogon zizanioides) identifies markers that distinguish non-fertile 'Sunshine' cultivar from other accessions. Ind Crops Prod 2017;108:629-35.

87. Swetha VP, Parvathy VA, Sheeja TE, Sasikumar B. DNA barcoding for discriminating the economically important Cinnamomum verum from its adulterants. Food biotechnol. 2014;28(3):183-94.

88. Lu L, Cox CJ, Mathews S, Wang W, et. al., Optimal data partitioning, multispecies coalescent and Bayesianconcordance analyses resolve early divergences of the grape family (Vitaceae); Cladistics (2017) In press. Direct Submission in NCBI; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, CAS, No. 20, Nanxincun, Xiangshan, Beijing, Beijing 100093, China. Submitted: 03-Oct-2016.

89. Yuan YW, Mabberley DJ, Steane DA, Olmstead RG. Further disintegration and redefinition of Clerodendrum (Lamiaceae): Implications for the understanding of the evolution an intriguing breeding strategy. Taxon. 2010;59(1):125-33.

90. Jarret RL, Merrick LC, Holms T, Evans J, Aradhya M. Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Genome. 1997;40(4):433-41. https://doi.org/10.1139/g97-058

91. Pandey LK, Chatterjee V, Tripathi PK, et. al., DNA barcoding of Clitoria ternatea from Madhya Pradesh, India. Direct Submission in NCBI; Biotechnology, St. Aloysius College, AhilyaBai Marg, Sadar, Cantt, jabalpur, Madhya Pradesh 482001, India. Submitted :23-Nov-2017.

92. Moore MJ and Jansen RK. Molecular evidence for the age, origin, and evolutionary history of the American desert plant genus Tiquilia (Boraginaceae). Mol Phylogenet Evol. 2006;39(3):668-87. Direct Submission in NCBI; Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL32611-7800, USA.Submitted:07-Sep-2005.

93. Bhowmick BK, Nanda S, Nayak S, Jha S, Joshi RK. An APETALA3 MADS-box linked SCAR marker associated with male specific sex expression in Coccinia grandis (L). Voigt. Sci Hortic. 2014 Sep 11;176:85-90. https://doi.org/10.1016/j.scienta.2014.06.041

94. Govarthanan M, Arunapriya S, Selvankumar T, Selvam K. Genetic variability among Coleus sp. studied by RAPD banding pattern analysis. International Journal of Biotechnology and Molecular Biology Research. 2011;2(12):202-08. https://doi.org/10.5897/IJBMBR11.030

95. El-Nasr TH, Ibrahim MM, Aboud KA, El-Enany MA. Assessment of genetic variability for three coriander (Coriandrum sativum L.) cultivars grown in egypt, using morphological characters, essential oil composition and ISSR Markers. World Applied Sciences Journal. 2013;25:839-49.

96. Mandal AB, Thomas VA. RAPD pattern of Costus speciosus Koen ex. Retz., an important medicinal plant from the Andaman and Nicobar. Curr Sci. 2007;93(3):369-73.

97. Kim YH, Shin YH, Kang SH, Kim JH, Ko SC. Relationship of Lycoris (Amaryllidaceae) based on RAPD markers. Korean Journal of Plant Taxonomy. 2008;38(1):17-29. https://doi.org/10.11110/kjpt.2000.30.1.017

98. Caiola MG, Caputo P, Zanier R. RAPD analysis in Crocus sativus L. accessions and related Crocus species. Biologia Plantarum. 2004;48(3):375-80.https://doi.org/10.1023/B:BIOP.0000041089.92559.84

99. Van Ee BW, Forster PI, Berry PE. Phylogenetic relationships and a new sectional classification of Croton (Euphorbiaceae) in Australia. Aust syst bot. 2015;28(4):219-33.

100. Horejsi T, Staub JE. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol. 1999;46(4):337-50. https://doi.org/10.1023/A:1008650509966

101. Bahraminejad A, Mohammadi-Nejad G, Abdul Kadir K, Bin Yusop MR, Samia MA. Molecular diversity of Cumin (Cuminum cyminum L.) using RAPD markers. Aust J Crop Sci. 2012;6(2):194-99.

102. Sasikumar B, Syamkumar S, Remya R, John Zachariah T. PCR based detection of adulteration in the market samples of turmeric powder. Food Biotechnol. 2004;18(3):299-306. https://doi.org/10.1081/FBT-200035022

103. Pathak R, Singh SK, Singh M, Henry A. Molecular assessment of genetic diversity in cluster bean (Cyamopsis tetragonoloba) genotypes. Journal of Genetics. 2010;89(2):243-46.https://doi.org/10.1007/s12041-010-0033-y

104. Liede-Schumann S, Dötterl S, Gebauer M, Meve U. A RAPD study of the Sarcostemma group of Cynanchum (Apocynaceae – Asclepiadoideae - Asclepiadeae). Org Divers Evol. 2013;13(1):15-31.

105. Roodt R, Spies JJ, Burger TH. Preliminary DNA fingerprinting of the turf grass Cynodondactylon (Poaceae: Chloridoideae). Bothalia.2002;32(1):117-22. https://doi.org/10.4102/abc.v32i1.474

106. Arif M, Zaidi NW, Singh YP, Haq QM, Singh US. A comparative analysis of ISSR and RAPD markers for study of genetic diversity in Shisham (Dalbergia sissoo). Plant Mol Biol Report. 2009;27(4):488-95. https://doi.org/10.1007/s11105-009-0097-0

107. Parani M, Lakshmi M, Senthilkumar P, Ram N, Parida A. Molecular phylogeny of mangroves V. Analysis of genome relationships in mangrove species using RAPD and RFLP markers. Theor Appl Genet. 1998;97(4):617-25. https://doi.org/10.1007/s001220050937

108. Sukrong S, Phadungcharoen T, Ruangrungsi N. DNA fingerprinting of medicinally used Derris species by RAPD molecular markers. Planta Med. 2006;72(11):P_162. https://doi.org/10.1055/s-2006-949962

109. Irshad S, Singh J, Kakkar P, Mehrotra S. Molecular characterization of Desmodium species - An important ingredient of ‘Dashmoola’ by RAPD analysis. Fitoterapia. 2009 Mar 1;80(2):115-8. https://doi.org/10.1016/j.fitote.2008.11.004

110. Nebauer SG, del Castillo-Agudo L, Segura J. An assessment of genetic relationships within the genus Digitalis based on PCR-generated RAPD markers. Theor Appl Genet. 2000;100(8):1209-16.https://doi.org/10.1007/s001220051426

111. Ramser J, Weising K, Kahl G, López-Peralta C, Wetzel R. Genomic variation and relationships in aerial yam (Dioscorea bulbifera L.) detected by random amplified polymorphic DNA. Genome. 1996 ;39(1):17-25. https://doi.org/10.1139/g96-003

112. Jehan T, Vashishtha A, Yadav SR, Lakhanpaul S. Genetic diversity and genetic relationships in Hyacinthaceae in India using RAPD and SRAP markers. Physiol Mol Biol Plants. 2014;20(1):103-14. https://doi.org/10.1007/s12298-013-0206-2

113. Moraes MD. Taxonomia e filogenia e dimerostemma, e sua relação intergenerica na subtribo Ecliptinae (Asteraceae: Heliantheae).2004.

114. Balasubramani SP, Manjunatha R, Venkatasubramanian P. et. al., Draft Genome of Embelia ribes. Direct Submission in NCBI; School of Life Sciences, TransdisciplinaryUniversity, FRLHT, #74/2, Jarakabande Kava, Bangalore, Karnataka 560106, India. Submitted:26-Sep-2016.

115. Keil M, Griffin AR. Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. TheorAppl Genet. 1994;89(4):442-50.

116. Raju BS, Manoj K, Sahoo D. Assessment of genetic diversity of Ficusspecies using RAPDmarkers as a measure of genomic polymorphism. IOSR J Pharm BiolSci. 2015;10(1):22-7.

117. Zhang LF, Zhang Z, Wang XM, GAO H, Tian HZ, Li HQ. Molecular Phylogeny of the Ficus auriculata Complex (Moraceae). Phytotaxa. 2018;362(1):039-54.

118. Al-Juhani WS. DNA barcoding of flora Saudi Arabia;. Direct Submissionin NCBI; Biology, Umm Al-Qura University, Al Zaher, Makkah, Westren region 2360, Saudi Arabia. Submitted :16-Jun-2018.

119. Thulin M, Moore AJ, El-Seedi H, Larsson A, Christin PA, Edwards EJ. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. Taxon. 2016;65(4):775-93.

120. Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, Jansen R, Ruhlman T. Evolutionary and biotechnology implications of plastid genome variation in the inverted repeat lacking clade of legumes. Plant biotechnol J. 2014;(6):743-54.

121. Liu D, Guo X, Lin Z, Nie Y, Zhang X. Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genet Resour Crop Evol. 2006;53(6):1145-52.https://doi.org/10.1007/s10722-005-1304-y

122. Kumar KS, Maruthi KR, Alfarhan AH, Rajakrishnan R, Thomas J. Molecular fingerprinting of Helicanthus elastica (Desr.) Danser growing on five different hosts by RAPD. Saudi J Biol Sci. 2016 ;23(3):335-40. https://doi.org/10.1016/j.sjbs.2015.12.002

123. Sanchez Puerta MV, Zubko MK, Palmer JD. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. New Phytol. 2015;206(1):381-96.

124. Zhang N and Handy SM. Plastid Genomes of Illicium;(Unpublished). Direct Submissionin NCBI; Center of Food Safety and Nutrition, Food and Drug Adminstration, 5100 Paint Branch Pkwy, College Park, MD 20740, USA. Submitted:31-Oct-2016.

125. Rajaseger G, Tan HT, Turner IM, Saw LG, Kumar PP. Random amplified polymorphic DNA variation among and within selected Ixora (Rubiaceae) populations and mutants. Ann Bot. 1999;84(2):253-57. https://doi.org/10.1006/anbo.1999.0918

126. Gupta S, Srivastava M, Mishra GP, Naik PK, Chauhan RS, Tiwari SK, Kumar M, Singh R. Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. African Journal of Biotechnology. 2008;7(23).

127. Kiel CA, Daniel TF, Darbyshire I, McDade LA. Unraveling relationships in the morphologically diverse and taxonomically challenging. Taxon. 2017;66(3):645-74.

128. Techaprasan J, Klinbunga S, Ngamriabsakul C, Jenjittikul T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences.Genet Mol Res. 2010;9(4):1957-73. https://doi.org/10.4238/vol9-4gmr873

129. Kumar SU, Goyal RA, Sheorayan AR, Kajla SU, Yadav OP, Mangal MA. Assessment of genetic diversity in Lepidium sativum using RAPD and ISSR markers. Ann Biol. 2012;28:93-97.

130. Sanjana P, Cordilea Hannah S, Senthilkumar U. Molecular phylogeny of selected species Genus Leucas from Peninsular India using DNA barcodes;(Unpublished). Direct Submission in NCBI; Department of Plant Biology and Plant Biotechnology, Women's Christian College, College Road, Chennai, Tamil Nadu 600006, India.Submitted05-Apr-2018.

131. Oh TJ, Gorman M, Cullis CA. RFLP and RAPD mapping in flax (Linum usitatissimum). Theor Appl Genet. 2000;101(4):590-3. https://doi.org/10.1007/s001220051520

132. Gavankar R, Chemburkar M. Genetic analysis of Madhuca longifolia (J. Koenig ex L.) JF Macbr. using RAPD markers. Int J Curr Microbiol App Sci. 2016;5(8):608-15. https://doi.org/10.20546/ijcmas.2016.508.068

133. Borchsenius F, Suarez LSS, Prince LM. Molecular phylogeny and redefined generic limits of Calathea (Marantaceae). Syst Bot. 2012;37(2):620-635.

134. Zhang D. Direct Submissionin NCBI; Guangdong Provincial Hospital of ChineseMedicine, leaves, guoyi, guangzhou, guangdong 510000, China.Submitted :02-Jul-2018.

135. Drew BT, Sytsma KJ. Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae). Am J Bot. 2012;99(5):933-53.

136. Zhu S. The identification and prewarning of invasive plants in Guangzhou based on DNA barcoding;. Direct Submissionin NCBI;Botany, South China Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou, Guangdong 510650,China.Submitted:13-Mar-2018.

137. Muluvi GM, Sprent JI, Soranzo N, Provan J, Odee D, Folkard G, McNicol JW, Powell W. Amplified fragment length polymorphism (AFLP) analysis of genetic variation in Moringa oleifera Lam. Mol Ecol. 1999;8(3):463-70. https://doi.org/10.1046/j.1365-294X.1999.00589.x

138. Saini RK, Saad KR, Ravishankar GA, Giridhar P, Shetty NP. Genetic diversity of commercially grown Moringa oleifera Lam. cultivars from India by RAPD, ISSR and cytochrome P 450-based markers. Plant SystEvol. 2013;299(7):1205-13.https://doi.org/10.1007/s00606-013-0789-7

139. Capo-Chichi LJ, Morton CM, Weaver DB. An intraspecific genetic map of velvetbean (Mucuna sp.) based on AFLP markers. Theor Appl Genet. 2004;108(5):814-21. https://doi.org/10.1007/s00122-003-1493-8

140. Padmesh P, Reji JV, Dhar MJ, Seeni S. Estimation of genetic diversity in varieties of Mucuna pruriens using RAPD. Biologia Plantarum. 2006;50(3):367-72. https://doi.org/10.1007/s10535-006-0051-z

141. Staats M and Fronen B. DNA barcoding of herbs and spices, and other condiments.Direct Submission. RIKILT -WUR, Wageningen University, Akkermaalsbos 2, Wageningen 6708 WB, Netherlands Submitted; 27-Jul-2018.

142. Brown N, Venkatasamy S, Khittoo G, Bahorun T, Jawaheer S. Evaluation of genetic diversity between 27 banana cultivars (Musa spp.) in Mauritius using RAPD markers. African Journal of Biotechnology. 2009;8(9).

143. Yanthan M, Misra AK. Molecular approach to the classification of medicinally important actinorhizal genus Myrica. Indian Journal of Biotechnology. 2013;12:133-6.

144. Swetha VP, Parvathy VA, Sheeja TE, Sasikumar B. Authentication of Myristica fragrans Houtt. using DNA barcoding. Food Control. 2017;73:1010-5.

145. Singh UM, Yadav D, Tripathi MK, Kumar A, Yadav MK. Genetic diversity analysis of Nardostachys jatamansi DC, an endangered medicinal plant of Central Himalaya, using random amplified polymorphic DNA (RAPD) markers. African Journal of Biotechnology. 2013;12(20): 2816-21.

146. Iqbal MS, Nadeem S, Mehboob S, Ghafoor A, Rajoka MI, Qureshi AS, Niaz B. Exploration of genotype specific fingerprinting of Nigella sativa L. using RAPD markers. Turk J Agric For. 2011;35(6):569-78.

147. Rabah SO, Shrestha B, Hajrah NH, Sabir MJ, Alharby HF, Sabir MJ, Alhebshi AM, Sabir JS, Gilbert LE, Ruhlman TA, Jansen RK. Passiflora plastome sequencing reveals widespread genomic rearrangements. J systevol. 2019;57(1):1-4.

148. Carovic K, Liber Z, Javornik B, Kolak I, Satovic Z. Genetic relationships within basil (Ocimum) as revealed by RAPD and AFLP markers. In XXVII International Horticultural Congress-IHC2006: II International Symposium on Plant Genetic Resources of Horticultural. 2006;171-78. https://doi.org/10.17660/ActaHortic.2007.760.22

149. Stefanovic S, Krueger L, Olmstead RG. Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. Am J Bot. 2002; 89(9):1510-22.

150. Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, et. al., The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One. 2010;5(9):e12762.

151. Kafkas S, Perl-Treves R. Interspecific relationships in Pistacia based on RAPD fingerprinting. Hort Science. 2002;37(1):168-71. https://doi.org/10.21273/HORTSCI.37.1.168

152. Hu JY, Saedler H. Evolution of the inflated calyx syndrome in Solanaceae; Mol Biol Evol. 2007;24 (11), 2443-53. Direct Submission in NCBI; Molecular Plant Genetics, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne weg 10, Koeln 50829, Germany. Submitted:14-Feb-2007.

153. Patra AP, Mukherjee AK, Acharya L. Comparative study of RAPD and ISSR markers to assess the genetic diversity of betel vine (Piper betle L.) in Orissa, India. Am J Biochem Mol Biol. 2011;1:200-11. https://doi.org/10.3923/ajbmb.2011.200.211

154. Khan S, Mirza KJ, Anwar F, Abdin MZ. Development of RAPD markers for authentication of Piper nigrum (L.). Environment & We an International Journal of Science & Technology. 2010;5:47-56.

155. El-hawary SS, El-sofany RH, Abdel-Monem AR, Ashour RS. Phytochemical Screening, DNA Fingerprinting, and Nutritional Value of Plectranthus amboinicus (Lour.) Spreng. Pharmacognosy Journal. 2012;4(30):10-3. https://doi.org/10.5530/pj.2012.30.2

156. Koutroumpa K, Theodoridis S, Warren BH, et. al., An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations; Ecol Evol 2018;8 (24), 12397-424.

157. Kesari V, Rangan L. Genetic diversity analysis by RAPD markers in candidate plus trees of Pongamia pinnata, a promising source of bioenergy. Biomass Bioenergy. 2011 Jul 1;35(7):3123-28. https://doi.org/10.1016/j.biombioe.2011.04.015

158. Sharma SK, Rawat D, Kumar S, Kumar A, Kumaria S, Satyawada RR. Single primer amplification reaction (SPAR) reveals intra-specific natural variation in Prosopis cineraria (L.) Druce. Trees. 2010;24(5):855-64. https://doi.org/10.1007/s00468-010-0455-4

159. Elmeer K, Almalki A. DNA finger printing of Prosopis cineraria and Prosopis juliflora using ISSR and RAPD techniques. Am J Plant Sci. 2011;2(04):527.

160. Jhansi Rani S, Usha R. Development of rapd and specific scar markers for the identification of Pterocarpus santalinus. L. Journal of Cell and Tissue Research. 2013;13(3). https://doi.org/10.4236/ajps.2011.24062

161. Song XY, Liu LW, Gong YQ, Wang MX, Zhao LP, Huang DQ. Optimization of RAPD and ISSR-PCR Reaction Systems for Radish (Raphanus sativus L.) Genomic DNA (J). Seed. 2007;2.

162. Padmalatha K, Prasad MN. Inter and intra-population genetic diversity of Rauvolfia serpentina (L.) Benth. ex Kurz, an endangered medicinal plant, by RAPD analysis. Med Aromat Plant Sci Biotechnol. 2007;1(1):118-23.

163. Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol. 2008;55(3):365-78. https://doi.org/10.1007/s10722-007-9244-3

164. Khan S, Mirza KJ, Tyagi MR, Abdin MZ. Development of RAPD markers for authentication of Ruta graveolens (L) and its adulterant. MAPSB. 2011;5(1):58-61.

165. Al-Qurainy F, Khan S, Tarroum M, Al-Hemaid FM, Ali MA. Molecular authentication of the medicinal herb Ruta graveolens (Rutaceae) and an adulterant using nuclear and chloroplast DNA markers. Genet Mol Res. 2011;10(4):2806-16. https://doi.org/10.4238/2011.November.10.3

166. Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki KI. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA research. 2004;11(2):93-99.

167. Mahar KS, Rana TS, Ranade SA. Molecular analyses of genetic variability in soap nut (Sapindus mukorossi Gaertn.). Industrial crops and products. 2011;34(1):1111-18. https://doi.org/10.1016/j.indcrop.2011.03.029

168. Weeks A, Zapata F, Pell SK, Daly DC, Mitchell JD, Fine PV. To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae”(Anacardiaceae and Burseraceae). Front Genet. 2014;5:409. https://doi.org/10.3389/fgene.2014.00409

169. Yi DK, Kim KJ. Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L. PloS one. 2012;7(5):e35872. https://doi.org/10.1371/journal.pone.0035872

170. Farruggia FT. Phylogenetic and monographic studies of the pantropical genus Sesbania Adanson (Leguminosae). Arizona State University; 2009.

171. Kumar JS, Krishna V, Seethapathy GS, Senthilkumar U, Ragupathy S, Ganeshaiah KN, Ganesan R, Newmaster SG, Ravikanth G, Shaanker RU. DNA barcoding to assess species adulteration in raw drug trade of “Bala”(genus: Sida L.) herbal products in South India. Biochem syst ecol. 2015;61:501-9.

172. Rosario LH, Padilla JO, Martínez DR, Grajales AM, Reyes JA, Feliu GJ, Van Ee B, Siritunga D. DNA Barcoding of the Solanaceae Family in Puerto Rico Including Endangered and Endemic Species. J Am Soc Hortic Sci. 2019;144(5):363-74. https://doi.org/10.21273/JASHS04735-19

173. Levin RA, Watson K, Bohs L. A four?gene study of evolutionary relationships in Solanum section Acanthophora. Am J Bot. 2005;92(4):603-12. https://doi.org/10.3732/ajb.92.4.603

174. Chiarini FE, Scaldaferro MA, Bernardello G, Acosta MC. Cryptic genetic diversity in Solanum elaeagnifolium (Solanaceae) from South America. Aust J Bot. 2018;66(7):531-40. https://doi.org/10.1071/BT17245

175. Rosario LH, Padilla JO, Martínez DR, Grajales AM, Reyes JA, Feliu GJ, Van Ee B, Siritunga D. DNA Barcoding of the Solanaceae Family in Puerto Rico Including Endangered and Endemic Species. J Am Soc Hortic Sci. 2019;144(5):363-74. https://doi.org/10.21273/JASHS04735-19

176. de la Estrella M, Forest F, Klitgard B, Lewis GP, Mackinder BA,et. al., A new phylogeny-based tribal classification of subfamily Detarioideae, an early branching clade of florally diverse tropical arborescent legumes. Scientific Reports. 2018;8(1):6884. https://doi.org/10.1038/s41598-018-24687-3

177. Collins D, Mill RR, Möller M. Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. Am J Bot. 2003;90(2):175-82. https://doi.org/10.3732/ajb.90.2.175

178. Bhau BS, Negi MS, Jindal SK, Singh M, Lakshmikumaran M. Assessing genetic diversity of Tecomella undulata (Sm.) Seem. - An endangered tree species using amplified fragment length polymorphisms-based molecular markers. Curr Sci. 2007;67-72.

179. Lakshmi P, Khan PA, Reddy PN, Lakshminarayana K, Ganapaty S. Genetic relationship among Tephrosia species as revealed by RAPD analysis. Asian Journal of Biological Science. 2008;1(1):1-10. https://doi.org/10.3923/ajbs.2008.1.10

180. Sarwat M, Das S, Srivastava PS. Estimation of genetic diversity and evaluation of relatedness through molecular markers among medicinally important trees: Terminalia arjuna, T. chebula and T. bellerica. Mol Biol Rep. 2011;38(8):5025-36. https://doi.org/10.1007/s11033-010-0649-2

181. Shinde VM, Dhalwal K, Mahadik KR, Joshi KS, Patwardhan BK. RAPD analysis for determination of components in herbal medicine. J Evid Based Complementary Altern Med. 2007;4(S1):21-3. https://doi.org/10.1093/ecam/nem109

182. Tomar P, Malik CP. Genetic diversity assessment in Trachyspermum ammi L. Sprague using CDDP and CBDP markers. Journal of Plant Science Research. 2016;32(1):27-36.

183. Sarwat M, Das S, Srivastava PS. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep. 2008;27(3):519-28.https://doi.org/10.1007/s00299-007-0478-5

184. Seneviratne G. Female sex-associated RAPD marker in pointed gourd (Trichosanthes dioica Roxb.). Curr Sci. 2002;82(2):131.

185. Li XJ, Fan CZ. Medicinal Materials Department, injiang Institute of Chinese Traditional Medical and Ethical Materia Medica, 9 Xinming Road, Urumqi, Xinjiang 830002, China. Submitted:25-Jul-2013.

186. Aras S, Duran A and Yenilmez G. Isolation of DNA for RAPD analysis from dry leaf material of some Hesperis L. specimens. Plant Mol Biol Rep.1993;21:461a-461f. https://doi.org/10.1007/BF02772597

187. Vanijajiva O, Sirirugsa P and Suvachittanont W. Confirmation of relationships among Boesenbergia (Zingiberaceae) and related genera by RAPD. Biochem Syst Ecol. 2005;33:159-70. https://doi.org/10.1016/j.bse.2004.06.012

188. Techen N, Khan IA, Pan Z, Scheffler BE. The use of polymerase chain reaction (PCR) for the identification of Ephedra DNA in dietary supplements. Planta Med. 2006; 72:241–47. https://doi.org/10.1055/s-2005-916173

189. Seethapathy GS, Raclariu-Manolica AC, Anmarkrud JA, Wangensteen H, De Boer HJ. DNA metabarcoding authentication of Ayurvedic herbal products on the European market raises concerns of quality and fidelity. Front Plant Sci. 2019;10:68. https://doi.org/10.3389/fpls.2019.00068

190. Li Q, Sun Y, Guo H, Sang F, Ma H, Peng H, et. al., Quality control of the traditional Chinese medicine Ruyijinhuang powder based on high-throughput sequencing and real-time PCR. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-26520-3

191. Choo BK, Moon BC, Ji Y, Kim BB, et. al., Development of SCAR markers for the discrimination of three species of medicinal plants, Angelica decursiva (Peucedanum decursivum), Peucedanum praeruptorum and Anthricus sylvestris, based on the internal transcribed spacer (ITS) sequence and random amplified polymorphic DNA (RAPD). Biol Pharm Bull. 2008:32:24-30. https://doi.org/10.1248/bpb.32.24

192. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, Van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol breed. 1997;3(5):381-90. https://doi.org/10.1023/A:1009612517139

193. Kerr KC, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PD. Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes. 2007;7(4):535-43. https://doi.org/10.1111/j.1471-8286.2007.01670.x

194. Singh HK, Parveen I, Raghuvanshi S, Babbar SB. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species. BMC Res Notes. 2012;5(1):42. https://doi.org/10.1186/1756-0500-5-42

195. Roy S, Tyagi A, Shukla V, Kumar A, Singh UM, Chaudhary LB, Datt B, Bag SK, Singh PK, Nair NK, Husain T. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species. PLoS One. 2010;5(10):e13674. https://doi.org/10.1371/journal.pone.0013674

196. Dubey NK, Kumar R, Tripathi P. Global promotion of herbal medicine: India’s opportunity. Curr Sci. 2004;86:37–41.

197. Zhang X, World Health Organization (WHO). General guidelines for methodologies on research and evaluation of traditional medicine. World Health Organization. 2000:1-71.

198. Yan-Bo Z, Pang-Chui S, Cho-Wing S, Zheng-Tao W, Yao T. Molecular authentication of Chinese herbal materials. J Food Drug Anal. 2007;15:1–9.

199. Echeverrigaray S, Agostini G, Atti-Serfini L, Paroul N, Pauletti GF, dos Santos AC. Correlation between the chemical and genetic relationships among commercial thyme cultivars. J Agric Food Chem. 2001;49: 4220–23. https://doi.org/10.1021/jf010289j

200. Chan K. Some aspects of toxic contaminants in herbal medicines. Chemosphere. 2013;52: 1361-71. https://doi.org/10.1016/S0045-6535(03)00471-5

201. Yip PY, Chau CF, Mak CY, Kwan HS. DNA methods for identification of Chinese medicinal materials. Chin Med.2007;2:9. https://doi.org/10.1186/1749-8546-2-9

202. Mahajan RTCM. Phyto-pharmacology of Ziziphus jujuba Mill a plant review. Pharmacol Rev. 2009;320-29.

203. Commission TBP. Appendix XI V. Deoxyribonucleic Acid (DNA) Based Identification Techniques for Herbal Drugs. (London: Te British Pharmacopoeia Commission, 2015).

Downloads

Published

01-10-2019

How to Cite

1.
Mattummal R, Kallingilkalathil Gopi D, Bobbili E, Koppala Narayana SK. A review on molecular techniques employed for authentication of Indian medicinal plants. Plant Sci. Today [Internet]. 2019 Oct. 1 [cited 2024 Apr. 26];6(4):465-78. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/588

Issue

Section

Review Articles