Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

The impact of three rootstock types on Fusarium sp. wilt resistance in melons plants (Cucumis melo L.) in Can Tho city (Vietnam)

DOI
https://doi.org/10.14719/pst.3596
Submitted
24 March 2024
Published
10-05-2025
Versions

Abstract

Growing melon (Cucumis melo L.) still faces many difficulties due to vine death disease caused by Fusarium sp. In the present study, melon plants with wilt disease symptoms were collected from Phong Dien (PD) and Cai Rang (CR) districts, Can Tho city (Vietnam). Three strains of Fusarium sp. (CRI, CR8.1 and PD) were isolated based on morphological characteristics such as the color of the fungus, spore sepals, branching patterns from the fungal hyphae, crescent-shaped megaspores measuring 24.7 - 27.34 x 3.66 - 3.68 µm; thin-walled spherical mantle spores. Among them, Fusarium isolate CRI had the highest virulence with a pathogenicity index of 96.8 % and a disease incidence of 100 % after 15 days of inoculation. The research results showed that the two rootstocks, pumpkin and luffa, had the lowest mortality rate (0.0 %) at all survey times and were highly resistant to string rot disease on melon caused by Fusarium sp.

References

  1. Ba TT, Khang VQ, Thuy VTB. Effect of Japanese bottle gourd rootstocks on the growth, yield and quality of melon Kim Co Nuong, Spring-summer season 2008. CTU Journal of Innovation and Sustainable Development. 2009;11:305-13.
  2. Tan LV, Thuy VTB, Ba TT, Tam PM, Hap TK, Chau LTB. Effect of gourd and squash rootstocks to growth, yield, quality of grafted melon (Cucumis melon L.) and musk melon(Cucumis melonvar. Cantalupensis) plantin the fields. Vietnam Journal of Agriculture and Rural Development.2021;1:68-76.
  3. Gómez-García R, Campos DA, Oliveria A, Aguilar C, Madureira AR, Pintado M. A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chemistry. 2021;335:127579. https://doi.org/10.1016/j.foodchem.2020.127579
  4. Manchali S, Murthy KNC, Vishnuvardana, Patil BS. Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants. 2019;10(9):1755. https://doi.org/10.3390/plants10091755
  5. Schwarz D, Rouphael Y, Colla G, Venema JH. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae. 2010;127:162-71. https://doi.org/10.1016/j.scienta.2010.09.016
  6. Chi HTT, Hieu TV, Nhu LTH, Trang NT, Anh PDQ, Ba TT, et al. The effectiveness of grafting and mulching on bacterial wilt disease caused by Ralstoniasolanacearum and yield on hot peppers in the Cu Lao Tay, Thanh Binh district, Dong Thap province. CTU Journal of Innovation and Sustainable Development. 2018;54:33-43.
  7. Reyad NHA, El-Sayed SF, Azoz SN. Evaluation of grafting using cucurbit interspecific hybrids to control fusarium wilt in cucumber. Plant Cell Biotechnology and Molecular Biology. 2021;22(37&38):50-63. https://doi.org/10.56557/pcbmb/2021/v22i37-386486
  8. Soha S, Ahmed ZA, Dawlat AAK, Mohamed IAZ. Histopathological and biochemical aspects of grafted and non-grafted cucumber infected with stem rot caused by Fusarium spp. Saudi Journal Biological Sciences. 2022;29(3):1770-80. https://doi.org/10.1016/j.sjbs.2021.10.053
  9. Zhang M, Yang X, Xu J, Liu G, Yao X, Ren R. Characterization of Fusarium root rot disease in grafted watermelon. European Journal of Plant Pathology. 2021;159:1-11. https://doi.org/10.1007/s10658-020-02013-w
  10. Kalman B, Abraham D, Graph S, Perl-Treves R, Harel YM, Degani,O. Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) Basal Rot in Northeastern Israel. Biology (Basel). 2020;9(4):69-87. https://doi.org/10.3390/biology9040069
  11. Lester WB, Timonthy EK, Len T, Hien PT, editors. Diagnostic manual for plant diseases in Vietnam. Australia: Australian Centre for International Agricultural Research (ACIAR); 2009.
  12. Thao LD, Anh PT, Trang TTT, Khanh LT, Hien LT, Binh VTP, et al. Fusariumfalciforme, a pathogen causing wilt disease of chrysanthemum in Vietnam. New Disease Report. 2010;43(2):e12013. https://doi.org/10.1002/ndr2.12013
  13. Lombard L, Sandoval-Denis M, Lamprecht SC, Crous PW. Epitypification of Fusarium oxysporum –clearing the taxonomic chaos. Persoonia, 2019;43:1-47. http://doi.org/10.3767/persoonia.2019.43.01
  14. Tziros T, Anastasia LL, Tzavella–Klonari K. Reduction of Fusarium wilt in watermelon by Pseudomonas chlororaphis PCL1391 and P. fluorescens WCS365. Phytopathologia Mediterranea. 2007;46(3):320-23. https://doi.org/10.14601/Phytopathol_Mediterr-2245
  15. Toshiaki O.,Iorri I, Fumio N, Hitoshi K.,TakasshiT. REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics. 2003;166(1):113-24. http://doi.org/10.1534/genetics.166.1.113
  16. Zheng J, Liyao W, Wenchao H, Yuzhu H. Fusarium oxysporum associated with Fusarium wilt on Pennisetumsinese in China. Pathogens. 2022;11(9):999. http://doi.org/ 10.3390/pathogens11090999
  17. Endrivas G, Toal D. Hot pepper fusarium wilt (Fusarium oxysporum F. sp. capsici): epidemics, characteristic features and management options. Journal of Agricutural Science. 2020;12(10):347-60. https://doi.org/10.5539/jas.v12n10p347
  18. Leslie JF, Summerell BA, editors. The Fusarium laboratory Manual. USA: Blackwell Publishing; 2006.

Downloads

Download data is not yet available.