Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 4 (2024)

Thriving against the odds: Unveiling the role of melatonin in Okra germination and seedling traits under PEG-induced osmotic stress

DOI
https://doi.org/10.14719/pst.3725
Submitted
17 April 2024
Published
29-11-2024 — Updated on 04-12-2024
Versions

Abstract

Altered environmental conditions subject plants to abiotic stresses like salinity, drought, temperature fluctuations (heat and cold) and exposure to heavy metals. Frequent stresses prompt the plant defense system to consistently adapt. Biostimulants assist plants in refining their defense strategies, allowing more effective responses to the changing environment and challenges. Melatonin, a neurohormone and antioxidant in mammals, has extended its presence to the plant domain due to its pervasive nature as a signaling molecule. Melatonin acts as a bio-stimulatory molecule in confronting stress in plants by regulating its growth and development. The present study attempts to comprehend the role of melatonin in combating drought stress. Okra genotypes namely, CO 4, Arka Anamika, Arka Abhay and Arka Nikita were subjected to PEG-induced osmotic stress (15 % PEG) in Petri plates supplemented with different doses of melatonin (50, 100, 150, 200, 250 µM). The seedling response varied with respect to genotypes in a dose-dependent manner. Among the genotypes, Arka Anamika performed better followed by Arka Nikita in terms of seedlings traits recorded. Higher concentrations of melatonin exhibited an inhibitory effect on seed germination and seedling growth parameters. However, priming okra seeds with 100 µM of melatonin showed promising results in mitigating the adverse effect of osmotic stress by promoting seed germination and seedling characteristics.

References

  1. Ahmed ZG, El-Sayed MA. Influence of drought stress on physiological traits of crossed okra varieties. Jordan J Biol Sci. 2021;14(2). https://doi.org/10.54319/jjbs/140208
  2. Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne P, et al. IPCC, 2023: Climate change 2023: Synthesis report, summary for policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
  3. Chuphal DS, Kushwaha AP, Aadhar S, Mishra S. Drought Atlas of India, 1901–2020. Sci Data. 2024; 11(1):7. https://doi.org/10.1038/s41597-023-02856-y
  4. Lalmuanzuala B, Sathyamoorthy N, Kokilavani S, Jagadeeswaran R, Kannan B. Drought analysis in southern region of Tamil Nadu using meteorological and remote sensing indices. MAUSAM. 2023; 74(4):973-88. https://doi.org/10.54302/mausam.v74i4.6040
  5. Chaturvedi AK, Surendran U, Gopinath G, Chandran KM, Anjali NK, Ct MF. Elucidation of stage specific physiological sensitivity of okra to drought stress through leaf gas exchange, spectral indices, growth and yield parameters. Agric Water Manag. 2019; 222:92-104. https://doi.org/10.1016/j.agwat.2019.05.041
  6. Li J, Abbas K, Wang W, Gong B, Wang L, Hou S, et al. Drought tolerance evaluation and verification of fifty pakchoi (Brassica rapa ssp. chinensis) varieties under water deficit condition. Agron. 2023;13(8):2087. https://doi.org/10.3390/agronomy13082087
  7. Niu S, Luo Y, Li D, Cao S, Xia J, Li J, Smith MD. Plant growth and mortality under climatic extremes: an overview. Environ and Exp Bot. 2014 Feb 1;98:13-19. https://doi.org/10.1016/j.envexpbot.2013.10.004
  8. Kaya MD, Okçu G, Atak M, C?k?l? Y, Kolsar?c? Ö. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron. 2006; 24(4):291-95. https://doi.org/10.1016/j.eja.2005.08.001
  9. Muneer S, Ko CH, Wei H, Chen Y, Jeong BR. Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS One. 2016; 11(6):e0157439. https://doi.org/10.1371/journal.pone.0157439
  10. Taiz L, Zeiger E. Plant Physiology, 4th ed.; Sinauer Associates Inc.: Sunderland, UK; 2016.
  11. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ and Exp Bot. 2007;61(3):199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  12. Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol. 2021;41(5):669-91. https://doi.org/10.1080/07388551.2021.1874280
  13. Abbas K, Li J, Gong B, Lu Y, Wu X, Lü G, Gao H. Drought stress tolerance in vegetables: The functional role of structural features, key gene pathways and exogenous hormones. Int J Mol Sci. 2023;24(18):13876. https://doi.org/10.3390/ijms241813876
  14. Indiastat. Area, production and productivity of okra in India (1987-1988 and 1991-1992 to 2023-2024- second advance estimates); 2023.
  15. Gemede HF, Ratta N, Haki GD, Woldegiorgis AZ, Beyene F. Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. J Food Process Technol. 2015;6(458):2. https://doi.org/10.4172/2157-7110.1000458
  16. Al-Harbi AR, Al-Omran AM, El-Adgham FI. Effect of drip irrigation levels and emitters depth on okra (Abelmoschus esculentus) growth. J Appl Sci. 2008;8:2764-69. https://doi.org/10.3923/jas.2008.2764.2769
  17. Mkhabela SS, Shimelis H, Gerrano AS, Mashilo J. Phenotypic and genotypic divergence in okra [Abelmoschus esculentus (L.) Moench] and implications for drought tolerance breeding: A review. S Afr J Bot. 2022;145:56-64. https://doi.org/10.1016/j.sajb.2020.12.029
  18. Dhankher OP, Foyer CH. Climate resilient crops for improving global food security and safety. Plant Cell Environ. 2018;41(5):877-84. https://doi.org/10.1111/pce.13207
  19. Arnao MB, Hernández-Ruiz J. Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 2014;19(12):789-97. https://doi.org/10.1016/j.tplants.2014.07.006
  20. Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, et al. Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiol Biochem. 2022;185:188-97. https://doi.org/10.1016/j.plaphy.2022.06.004
  21. Hossain MS, Li J, Sikdar A, Hasanuzzaman M, Uzizerimana F, Muhammad I, et al. Exogenous melatonin modulates the physiological and biochemical mechanisms of drought tolerance in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Mol. 2020;25(12):2828. https://doi.org/10.3390/molecules25122828
  22. Li H, Chang J, Chen H, Zhang Y, Ma J, Zhang X. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci. 2017;8:252014. https://doi.org/10.3389/fpls.2017.00295
  23. Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul. 2014;74:139-52. https://doi.org/10.1007/s10725-014-9905-0
  24. Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, Zhang K, et al. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ. 2020;8:e9450. https://doi.org/10.7717/peerj.9450
  25. Zhang T, Wang J, Sun Y, Zhang L, Zheng S. Versatile roles of melatonin in growth and stress tolerance in plants. J of Plant Growth Regul. 2022;1-17.
  26. Bina F, Bostani A. Effect of salinity (NaCl) stress on germination and early seedling growth of three medicinal plant species. Adv Life Sci. 2017;4(3):77-83.
  27. Saima S, Li G, Wu G. Effects of drought stress on hybrids of Vigna radiata at germination stage. Acta Biol Hung. 2018;69:481-92. https://doi.org/10.1556/018.69.2018.4.9
  28. Raza S, Saleem MF, Khan IH, Jamil M, Ijaz M, Khan MA. Evaluating the drought stress tolerance efficiency of wheat (Triticum aestivum L.) cultivars. RJOAS. 2012;12(12):41-46. https://doi.org/10.18551/rjoas.2012-12.04
  29. Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, et al. Melatonin promotes water?stress tolerance, lateral root formation and seed germination in cucumber (Cucumis sativus L.). J Pineal Res. 2012;54(1):15-23. https://doi.org/10.1111/j.1600-079X.2012.01015.x
  30. Hussain M, Farooq M, Lee DJ. Evaluating the role of seed priming in improving drought tolerance of pigmented and non?pigmented rice. J Agron Crop Sci. 2017;203(4):269-76. https://doi.org/10.1111/jac.12195
  31. Shu K, Zhou W, Chen F, Luo X. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Front Plant Sci. 2018;9:355447. https://doi.org/10.3389/fpls.2018.00416
  32. Sharma A, Zheng BS. Melatonin mediated regulation of drought stress: physiologi cal and molecular aspects. Plants. 2019;8(7):190. https://doi.org/10.3390/plants8070190
  33. Liu M, Wang Z, Xiao HM, Yang Y. Characterization of TaDREB1 in wheat genotypes with different seed germination under osmotic stress. Hereditas. 2018;155:1-9. https://doi.org/10.1186/s41065-018-0064-6
  34. Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma. 2019;256:1217-27. https://doi.org/10.1007/s00709-019-01354-6
  35. Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, et al. Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci. 2019;20(5):1040. https://doi.org/10.3390/ijms20051040
  36. Zhang M, He S, Qin B, Jin X, Wang M, Ren C, et al. Exogenous melatonin reduces the inhibitory effect of osmotic stress on antioxidant properties and cell ultrastructure at germination stage of soybean. PLoS One. 2020;15(12):e0243537. https://doi.org/10.1371/journal.pone.0243537
  37. Guo Y, Li D, Liu L, Zhu L, Zhang K, Zhang Y, et al. Seed priming with melatonin promotes seed germination and seedling growth of Triticale hexaploide L. under PEG-6000 induced drought stress. Front Plant Sci. 2022;13:932912. https://doi.org/10.3389/fpls.2022.932912
  38. Arnao MB, Hernández?Ruiz J. Melatonin promotes adventitious?and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res. 2007;42(2):147-52. https://doi.org/10.1111/j.1600-079X.2006.00396.x
  39. Cao Q, Li G, Cui Z, Yang F, Jiang X, Diallo L, Kong F. Seed priming with melatonin improves the seed germination of waxy maize under chilling stress via promoting the antioxidant system and starch metabolism. Sci Rep. 2019;9(1):15044. https://doi.org/10.1038/s41598-019-51122-y
  40. Khan MN, Zhang J, Luo T, Liu J, Rizwan M, Fahad S. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind Crop Prod. 2019;140:111597. https://doi.org/10.1016/j.indcrop.2019.111597
  41. Wen D, Gong B, Sun S, Liu S, Yang F, Shi Q. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci. 2016;7:195165. https://doi.org/10.3389/fpls.2016.00718
  42. Xiao S, Liu L, Wang H, Li D, Bai Z, Zhang Y, et al. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PloS One. 2019;14(6):e0216575. https://doi.org/10.1371/journal.pone.0216575
  43. Zou J, Yu H, Yu Q, Jin X, Cao L, Wang M, et al. Physiological and UPLC-MS/MS widely targeted metabolites mechanisms of alleviation of drought stress-induced soybean growth inhibition by melatonin. Ind Crop Prod. 2021;163:113323. https://doi.org/10.1016/j.indcrop.2021.113323
  44. Geilfus CM. The pH of the apoplast: dynamic factor with functional impact under stress. Mol Plant. 2017;10(11):1371-86. https://doi.org/10.1016/j.molp.2017.09.018
  45. Zeng L, Cai JS, Li JJ, Lu GY, Li CS, Fu GP, et al. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J Integr Agric. 2018;17(2):328-35. https://doi.org/10.1016/S2095-3119(17)61757-X
  46. Ahmad S, Kamran M, Ding R, Meng X, Wang H, Ahmad I, et al. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ. 2019;7:e7793. https://doi.org/10.7717/peerj.7793
  47. Muhammad I, Yang L, Ahmad S, Mosaad IS, Al-Ghamdi AA, Abbasi AM, Zhou XB. Melatonin application alleviates stress-induced photosynthetic inhibition and oxidative damage by regulating antioxidant defense system of maize: A meta-analysis. Antioxidants. 2022;11(3):512. https://doi.org/10.3390/antiox11030512
  48. Zou JN, Jin XJ, Zhang YX, Ren CY, Zhang MC, Wang MX. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica. 2019;57(2). https://doi.org/10.32615/ps.2019.066
  49. Jiang X, Li H, Song X. Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pak J Bot. 2016;48(4):1345-52.

Downloads

Download data is not yet available.