Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Frankincense: A potential phytotherapeutic agent in cancer treatment

DOI
https://doi.org/10.14719/pst.7288
Submitted
19 January 2025
Published
09-10-2025 — Updated on 20-10-2025
Versions

Abstract

Plant-isolated compounds are the roadmap for the modern pharmaceutical industry due to the anticancer activities of their bioactive constituents and metabolites. Boswellia sacra (Burseraceae) oleo gum resin has cytotoxic potential for the cure of various ailments, including infectious, inflammatory and arthritic diseases. Cancer is a complex health condition characterized by gene mutation and increased cell number. Worldwide, cancer is regarded as the most critical reason for morbidity and mortality. Traditional Chinese medicine, Ayurveda and Arab folk medicine all utilized it as an anticoagulant, antimicrobial, immunomodulatory and antidiabetic agent. Boswellic acids (BA), an active component of frankincense isolated from the dried gum resin of B. sacra has been utilized for the cure of several ailments, including inflammatory diseases, cancer, cerebral edema, asthma, chronic pain syndrome, arthritis, memory disorders and chronic bowel diseases since years. This study was designed to summarize the recent scientific knowledge regarding the anti-cancer properties of Frankincense (Olibanum), which is obtained from the B. sacra. However, further studies are required to elucidate its exact underlying molecular mechanisms in cancer treatment. Frankincense's ability to reduce inflammation is mediated by inhibition of several pathways like LOX, COX-2 pathway and downregulation of CXCR4, VEGF, NF-κB and matrix metalloproteinases MMPs. BA also displayed an anti-proliferative effect and induced apoptosis in several cancer cells, such as HCT-116 and MCF-7 cells. AKBA (3-O-acetyl-11-keto-β-boswellic acid) has been shown to activate extrinsic apoptotic pathways by causing the cleavage of procaspases and PARP and to inhibit the Wnt/β-catenin, PI3K/AKT and EGFR pathways, while activating the ATM/P53 signaling pathway. The therapeutic potential and anticancer properties of frankincense are still in the early stages of investigation. This review summarizes the efficacy of BA in various types of cancer and provides a wide scope of study on the anti-cancer properties of BA in terms of the development of novel drugs that would be more helpful both physically and economically.

References

  1. 1. Afsharypour S, Rahmani M. Essential oil constituents of two African olibanums available in Isfahan commercial market. Iran J Pharmacol Sci. 2005;1(3):167–70. https://doi.org/10.22037/ijps.v1.39508
  2. 2. Safayhi H, Rall B, Sailer ER, Ammon HP. Inhibition by boswellic acids of human leukocyte elastase. J Pharmacol Exp Ther. 1997;280(1):460–63. https://doi.org/10.1016/S0022-3565(24)36628-5
  3. 3. Yousef JM. Identifying Frankincense impact by biochemical analysis and histological examination on rats. Saudi J Biol Sci. 2011;18(2):189–94. https://doi.org/10.1016/j.sjbs.2010.10.005
  4. 4. Michie CA, Cooper E. Frankincense and Myrrh as remedies in children. J R Soc Med. 1991;84(10):602–05. https://doi.org/10.1177/014107689108401011
  5. 5. Siddiqul MZ. Boswellia serrata, a potential anti-inflammatory agent: An overview. Indian J Pharm Sci. 2011;73(3):255–61. https://doi.org/10.4103/0250-474X.93507
  6. 6. Lardos A, Prieto-Garcia J, Heinrich M. Resins and gums in historical iatrosophia texts from Cyprus– A botanical and medico pharmacological approach. Front Pharmacol. 2011;2:32. https://doi.org/10.3389/fphar.2011.00032
  7. 7. Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006;72(12): 1100–16. https://doi.org/10.1055/s-2006-947227
  8. 8. Nusier MK, Bataineh HN, Bataineh ZM, Daradka HM. Effect of frankincense (Boswellia thurifera) on reproductive system in adult male rat. J Health Sci. 2007;53(3):365–70. https://doi.org/10.1248/jhs.53.365
  9. 9. Siemoneit U, Pergola C, Jazzar B, Northoff H, Skarke C, Jaunch J, et al. On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur J pharmacol. 2009;606(1-3):246–54. https://doi.org/10.1016/j.ejphar.2009.01.044
  10. 10. Roy NK, Deka A, Bordoloi D, Mishra S, Kumar AP, Sethi G, et al. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett. 2016;377(1):74–86. https://doi.org/10.1016/j.canlet.2016.04.017
  11. 11. Akihisa T, Tabata K, Banno N, Tokuda H, Nishihara R, Nakamura Y, et al. Cancer chemopreventive effects and cytotoxic activities of the triterpene acids from the resin of Boswellia carteri. Biol Pharm Bull. 2006;29(9):1976–79. https://doi.org/10.1248/bpb.29.1976
  12. 12. Calabrese V, Osakabe N, Khan F, Wenzel U, Modafferi S, Nicolasi L, et al. Frankincense: A neuronutrient to approach Parkinson’s disease treatment. Open Med. 2024;19(1):20240988. https://doi.org/10.1515/med-2024-0988
  13. 13. Chashoo G, Singh SK, Sharma PR, Mondhe DM, Hamid A, Saxena A, et al. A propionyloxy derivative of 11-keto-β-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition. Chem Biol Interact. 2011;189(1-2):60–71. https://doi.org/10.1016/j.cbi.2010.10.017
  14. 14. Calabro S, Alzoubi K, Faggio C, Laufer S, Lang F. Triggering of suicidal erythrocyte death following boswellic acid exposure. Cell Physio Biochem. 2015;37(1):131–42. https://doi.org/10.1159/000430339
  15. 15. Ahmed HH, Abd-Rabou AA, Hassan AZ, Kotob SE. Phytochemical analysis and anti-cancer investigation of Boswellia serrata bioactive constituents In vitro. Asian Pac J Cancer Prev. 2015;16(16):7179–88. https://doi.org/10.7314/APJCP.2015.16.16.7179
  16. 16. Kim HR, Kim MS, Kwon DY, Chae SW, Chae HJ. Boswellia serrata-induced apoptosis is related with ER stress and calcium release. Genes Nutr. 2008;2:371–74. https://doi.org/10.1007/s12263-007-0072-z
  17. 17. 1Safayhi H, Boden SE, Schweizer S, Ammon HP. Concentration-dependent potentiating and inhibitory effects of Boswellia extracts on 5-lipoxygenase product formation instimulated PMNL. Planta med. 2000;66(02):110–13. https://doi.org/10.1055/s-2000-11136
  18. 18. Zhang Y, Ning Z, Lu C, Zhao S, Wang J, Liu B, et al. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties. Chem Cent J. 2013;7(1):1–16. https://doi.org/10.1186/1752-153X-7-153
  19. 19. Liu JJ, Nilsson A, Oredsson S, Badmaev V, Zhao WZ, Duan RD. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent of Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinog. 2002;23(12):2087–93. https://doi.org/10.1093/carcin/23.12.2087
  20. 20. Lu M, Xia L, Hua H, Jing Y. Acetyl-keto-β-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res. 2008;68(4):1180–86. https://doi.org/10.1158/0008-5472.CAN-07-2978
  21. 21. Liu JJ, Duan RD. LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells. Anticancer Res. 2009;29(8):2987–91.
  22. 22. Park B, Sung B, Yadav VR, Cho SG, Liu M, Aggarwal BB. Acetyl-11-keto-β-boswellic acid suppresses the invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int J Cancer. 2011;129(1):23–33. https://doi.org/10.1002/ijc.25966
  23. 23. Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, et al. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2–mediated angiogenesis. Cancer Res. 2009;69(14):5893–900. https://doi.org/10.1158/0008-5472.CAN-09-0755
  24. 24. Park B, Prasad S, Yadav V, Sung B, Aggarwal BB. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PlosOne. 2011;6(12):e26943. https://doi.org/10.1371/journal.pone.0026943
  25. 25. Yuan Y, Cui SX, Wang Y, Ke HN, Wang RQ, Lou HX, et al. RETRACTED: Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through the modulation of multiple signaling pathways. Biochem Biophys Acta. 2013;1830(10):4907–16. https://doi.org/10.1016/j.bbagen.2013.06.039
  26. 26. Syrovets T, Buchele B, Gedig E, Slupsky JR, Simmet T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIα. Mol Pharmacol. 2000;58(1):71–81. https://doi.org/10.1124/mol.58.1.71
  27. 27. Jamshidi-Adegani F, Ghaemi S, Al-Hashmi S, Vakilian S, Al-Kindi J, Rehman NU, et al. Comparative study of the cytotoxicity, apoptotic and epigenetic effects of Boswellic acid derivatives on breast cancer. Sci Rep. 2022;12(1):19979. https://doi.org/10.1038/s41598-022-24229-y
  28. 28. Al-Harrasi A, Al-Saidi S. Phytochemical analysis of the essential oil from botanically certified Oleogum resin of Boswellia sacra (Omni Luban). Mol. 2008;13(9):2181–89. https://doi.org/10.3390/molecules13092181
  29. 29. Rijkers T, Ogbazghi W, Wessel M, Bongers F. The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol. 2006;43(6):1188–95. https://doi.org/10.1111/j.1365-2664.2006.01215.x
  30. 30. Schmiech M, Ulrich J, Lang SJ, Buchele B, Paetz C, St-Gelais A, et al. 11-keto-α-boswellic acid, a novel triterpenoid from Boswellia spp. with chemotaxonomic potential and antitumor activity against triple-negative breast cancer cells. Mol. 2021;26(2):366. https://doi.org/10.3390/molecules26020366
  31. 31. Goyal S, Sharma P, Ramchandani U, Shrivastava SK, Dubey PK. Novel anti-inflammatory topical herbal gels containing Withania somnifera and Boswellia serrata. Int J Pharm Biol Arch. 2011;2: 1087–94.
  32. 32. Tschirch A, Halbey. Untersuchungen uber die sekrete. Ueber das olibanum. Arch Pharm (Weinheim). 1898;236(5–8):487–503. https://doi.org/10.1002/ardp.18982360517
  33. 33. Snatzke G, Vertesy L. Uber die neutralen sesqui-und triterpene des Weihrauchs. Monatsh Chem. 1967;98:121–32. https://doi.org/10.1007/BF00901106
  34. 34. Allan GG. The stereochemistry of the boswellic acids. Phytochem. 1968;7(6):963–73. https://doi.org/10.1016/S0031-9422(00)82183-4
  35. 35. Niebler J, Buettner, A. Identification of odorants in frankincense (Boswellia sacra Flueck.) by aroma extract dilution analysis and two-dimensional gas chromatography–mass spectrometry/olfactometry. Phytochem. 2015;109:66–75. https://doi.org/10.1016/j.phytochem.2014.10.030
  36. 36. Elnawasany S, Haggag YA, Shalaby SM. Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line. Complement Med Ther. 2023;23(1):270. https://doi.org/10.1186/s12906-023-04096-4
  37. 37. Mashhadi FF, Salimi S, Forouzandeh F, Naghsh N. Comparison of anticancer activity of hydroalcoholic extracts of Curcuma longa L., Peganum harmala L. and Boswellia serrata on HeLa cells. Jundishapur J Nat Pharm Prod. 2017;12(2):e37336 https://doi.org/10.5812/jjnpp.37336
  38. 38. Shah SA, Rathod IS, Suhagina BN, Pandya SS, Parmar VK. A simple High-perhormance liquid chromatographic method for estimation of boswellic acids from the market formulation containing Boswellia serrata extract. J Chromatogr Sci. 2008;46:735–38. https://doi.org/10.1093/chromsci/46.8.735
  39. 39. Sharma T, Jana S. Boswellic acids as natural anticancer medicine: precious gift to humankind. J Herb Med. 2019;20:100313. https://doi.org/10.1016/j.hermed.2019.100313
  40. 40. Yazdanpanahi N, Behbahani M, Yektaeian A. Effect of Boswellia thurifera gum methanol extract on cytotoxicity and P53 gene expression in human breast cancer cell line. Iran J Pharm Res. 2014;13:719–24. https://doi.org/10.22037/ijpr.2014.1507
  41. 41. Bhushan S, Kumar A, Malik F, Andotra SS, Sethi VK, Kaur IP, et al. A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells. Apoptosis. 2007;12:1911–26. https://doi.org/10.1007/s10495-007-0105-5
  42. 42. Suhail MM, Wu W, Cao A, Mondalek FG, Fung KM, Shih PT, et al. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. Complement Altern Med. 2011;11:1–14. https://doi.org/10.1186/1472-6882-11-129
  43. 43. Frank MB, Yang Q, Osban J, Azzarello JT, Saban MR, Saban R, et al. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. Complement Altern Med. 2009;9:6. https://doi.org/10.1186/1472-6882-9-6
  44. 44. Hussain H, Wang D, El-Seedi HR, Rashan L, Ahmed I, Abbas M, et al. Therapeutic potential of boswellic acids: An updated patent review (2016–2023). Expert Opi Ther Pat. 2024;34(8):723–32. https://doi.org/10.1080/13543776.2024.2369626
  45. 45. Al Serwi RH, Darwish SF, Mahran YF. Growth hormone modulates the inflammatory and apoptotic pathways incorporated in fuorouracil-induced oral mucositis in rats. Egypt Dent J. 2020;66:327–36. https://doi.org/10.21608/edj.2020.77550
  46. 46. Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res. 2019;144:192–209. https://doi.org/10.1016/j.phrs.2019.04.004
  47. 47. Kunnumakkara AB, Bordoloi D, Sailo BL, Roy NK, Thakur KK, Banik K, et al. Cancer drug development: The missing links. Exp Biol Med. 2019;244(8):663–89. https://doi.org/10.1177/1535370219839163
  48. 48. Shanmugam MK, Warrier S, Kumar AP, Sethi G, Arfuso F. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr Vasc Pharmacol. 2017;15(6):532–52. https://doi.org/10.2174/1570161115666170713094319
  49. 49. Eferth T, Oesch F. Anti-inflammatory and anti-cancer activities of frankincense: targets, treatments and toxicities. Semin Cancer Biol. 2022;80:39–57. https://doi.org/10.1016/j.semcancer.2020.01.015
  50. 50. Estrada AC, Syrovets T, Pitterle K, Lunov O, Buchele B, Schimana-Pfeifer J, et al. Tirucallic acids are novel pleckstrin homology domain-dependent Akt Inhibitors inducing apoptosis in prostate cancer cells. Mol Pharmacol. 2010;77(3):378–87. https://doi.org/10.1124/mol.109.060475
  51. 51. Alam M, Khan H, Samiullah L, Siddique KM. A review on phytochemical and pharmacological studies of Kundur (Boswellia serrata Roxb Ex Colebr.)- A Unani Drug. J Appl Pharm Sci. 2012;2:148–56.
  52. 52. Xia L, Chen D, Han R. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol Cancer Ther. 2005;4(3):381–88. https://doi.org/10.1158/1535-7163.MCT-03-0266
  53. 53. Raja AF, Ali F, Khan IA, Shawl AS, Arora DS. Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. Res Notes. 2011;4(1):1–8. https://doi.org/10.1186/1756-0500-4-406
  54. 54. Mazzio EA, Lewis CA, Soliman KF. Transcriptomic profiling of MDA-MB-231 cells exposed to Boswellia serrata and 3-O-Acetyl-B-boswellic acid; ER/UPR mediated programmed cell death. Cancer Genom Proteom. 2017;14(6):409–25. https://doi.org/10.21873/cgp.20051
  55. 55. Thummuri D, Jeengar MK, Shrivastava S, Areti A, Yerra VG, Yamjala S, et al. Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation and causes apoptosis and chemosensitization in triple- negative breast cancer cells. Environ Toxicol Pharmacol. 2014;38(1):58–70. https://doi.org/10.1016/j.etap.2014.05.002
  56. 56. Bonucci M, Fioranelli M, Roccia MG, Nardo V, Carolina JA, Lotti T. Use of boswellia-based cream for prevention of adjuvant radiotherapy skin damage in mammary carcinoma. Dermatol Ther. 2016;29(6):393. https://doi.org/10.1111/dth.12351
  57. 57. Ni X, Suhail MM, Yang Q, Cao A, Fung KM, Postier RG, et al. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model. Complement Altern Med. 2012;12(1):1–14. https://doi.org/10.1186/1472-6882-12-253
  58. 58. Becer E, Kabadayı H, Baser KH, Vatansever HS. Boswellia sacra essential oil manages colon cancer stem cells' proliferation and apoptosis: A new perspective for cure. J Essent Oil Res. 2021;33(1):53–62. https://doi.org/10.1080/10412905.2020.1839586
  59. 59. Schmiech M, Lang SJ, Ulrich J, Werner K, Rashan LJ, Syrovets T, et al. Comparative investigation of frankincense nutraceuticals: correlation of boswellic and lupeolic acid contents with cytokine release inhibition and toxicity against triple-negative breast cancer cells. Nutr. 2019;11(10):2341. https://doi.org/10.3390/nu11102341
  60. 60. Yosseff AR, Nafea H, El-Tahtawy OM, Rashan L, El-Shazly M, Youness RA. Refining triple negative breast cancer targeted therapy: special focus on tyrosine kinase receptors. Breast Cancer. 2022. p. 24-46
  61. 61. Khwairakpam AD, Monisha J, Banik K, Choudhary H, Sharma A, Bordoloi D, et al. Chemoresistance in brain cancer and different chemosensitization approaches. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 107–27. https://doi.org/10.1142/9789813208575_0005
  62. 62. Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev. 2009;29(5):767–820. https://doi.org/10.1002/med.20156
  63. 63. Raghupathi W, Raghupathi V. An empirical study of chronic diseases in the United States: A visual analytics approach. Int J Environ Res Public Health. 2018;15(3):431. https://doi.org/10.3390/ijerph15030431
  64. 64. Li W, Liu J, Fu W, Zeng X, Ren L, Liu S, et al. 3-O-acetyl-11-keto-beta-boswellic acid exerts anti-tumor effects in glioblastoma by arresting the cell cycle at the G2/M phase. J Exp Clin Cancer Res. 2018;37:1-15. https://doi.org/10.1186/s13046-018-0805-4
  65. 65. Glaser T, Winter S, Groscurth P, Safayhi H, Sailer ER, Ammon HP, et al. Boswellic acids and malignant glioma: Induction of apoptosis but no modulation of drug sensitivity. Br J Cancer. 1999;80(5):756–65. https://doi.org/10.1038/sj.bjc.6690419
  66. 66. Conti S, Vexler A, Edry-Botzer L, Kalich-Philosoph L, Corn BW, Shtraus N, et al. Combined acetyl-11-keto-beta-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoSOne. 2018;13(7):e0198627. https://doi.org/10.1371/journal.pone.0198627
  67. 67. Ravanan P, Singh SK, Rao GS. Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J Biosci. 2011;36:297–307. https://doi.org/10.1007/s12038-011-9056-7
  68. 68. Bone K. Boswellia: A new herbal breakthrough for osteoarthritis.
  69. 69. Suleiman M, Rashan L. Case report of patient with gliosarcoma treated with surgery, radiochemotherapy and Boswellia sacra preparation. Phytother. 2022;43(S01):P52.
  70. 70. Liu JJ, Nilsson A, Oredsson S, Badmaev V, Duan RD. Keto- and acetyl-keto-boswellic acids inhibit proliferation and induce apoptosis in HepG2 cells via a caspase-8-dependent pathway. Int J Mol Med. 2002;10(4):501–05. https://doi.org/10.3892/ijmm.10.4.501
  71. 71. Liu JJ, Huang B, Hooi SC. Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol. 2006;148(8):1099–107. https://doi.org/10.1038/sj.bjp.0706817
  72. 72. Wang R, Wang Y, Gao Z, Qu X. The comparative study of acetyl-11-keto-beta-boswellic acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APC(Min/+) mice. Drug Discov Ther. 2014;8(1):25–32. https://doi.org/10.5582/ddt.8.25
  73. 73. Yadav VR, Prasad S, Sung B, Gelovani JG, Guha S, Krishnan S, et al. Boswellic acid inhibits growth and metastasis of human colorectal cancer in the orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int J Cancer. 2012;130(9):2176–84. https://doi.org/10.1002/ijc.26251
  74. 74. Liu JJ, Huang B, Hooi SC. Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol. 2006;148(8):1099–107. https://doi.org/10.1038/sj.bjp.0706817
  75. 75. Wang D, Ge S, Bai J, Song Y. Boswellic acid exerts potent anticancer effects in HCT-116 human colon cancer cells mediated via induction of apoptosis, cell cycle arrest, cell migration inhibition and inhibition of PI3K/AKT signalling pathway. J BUON. 2018;23(2):340–45.
  76. 76. Shen Y, Takahashi M, Byun HM, Link A, Sharma N, Balaguer F, et al. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol Ther. 2012;13(7):542–52. https://doi.org/10.4161/cbt.19604
  77. 77. Takahashi M, Sung B, Shen Y, Hur K, Link A, Boland CR, et al. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family. Carcinogenesis. 2012;33(12):2441–49. https://doi.org/10.1093/carcin/bgs286
  78. 78. Toden S, Okugawa Y, Buhrmann C, Nattamai D, Anguiano E, Baldwin N, et al. Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev Res. 2015;8(5):431–43. https://doi.org/10.1158/1940-6207.CAPR-14-0354
  79. 79. Ranjbarnejad T, Saidijam M, Moradkhani S, Najafi R. Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostaglandins Other Lipid Mediat. 2017;131:1–8. https://doi.org/10.1016/j.prostaglandins.2017.05.003
  80. 80. Khan S, Kaur R, Shah BA, Malik F, Kumar A, Bhushan S, et al. A novel cyano derivative of 11-keto-beta-boswellic acid causes apoptotic death by disrupting PI3K/AKT/Hsp-90 cascade mitochondrial integrity and other cell survival signaling events in HL-60 cells. Mol Carcinog. 2012;51(9):679–95. https://doi.org/10.1002/mc.20821
  81. 81. Shao Y, Ho CT, Chin CK, Badmaev V, Ma W, Huang MT. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med. 1998;64 (4):328–31. https://doi.org/10.1055/s-2006-957444
  82. 82. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. A Global cancer statistics, 2012. CA: A Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262
  83. 83. Zhang J, Sikka S, Siveen KS, Lee JH, Um JY, Kumar AP, et al. Cardamonin represses proliferation, invasion and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer. Apoptosis. 2017;22:158–68. https://doi.org/10.1007/s10495-016-1313-7
  84. 84. Padmavathi G, Monisha J, Banik K, Thakur KK, Choudhary H, Bordoloi D, et al. Different chemosensitization approaches to overcome chemoresistance in prostate cancer. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 583–613. https://doi.org/10.3390/molecules25102278
  85. 85. Liu YQ, Wang SK, Xu QQ, Yuan HQ, Guo YX, Wang Q, et al. Acetyl-11-keto-beta-boswellic acid suppresses docetaxel-resistant prostate cancer cells In vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacol Sin. 2019;40(5):689–98. https://doi.org/10.1038/s41401-018-0157-9
  86. 86. Syrovets T, Gschwend JE, Buchele B, Laumonnier Y, Zugmaier W, Genze F, et al. Inhibition of IκB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells In vitro and in vivo. J Biol Chem. 2005;280(7):6170–80. https://doi.org/10.1074/jbc.M409477200
  87. 87. Yuan HQ, Kong F, Wang XL, Young CY, Hu XY, Lou HX. Inhibitory effect of acetyl-11-keto-beta-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochem Pharmacol. 2008;75(11):2112–21. https://doi.org/10.1016/j.bcp.2008.03.005
  88. 88. Manu KA, Shanmugam MK, Ong TH, Subramaniam A, Siveen KS, Perumal E, et al. Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma. PLoS One. 2013;8(3):e57015. https://doi.org/10.1371/journal.pone.0057015
  89. 89. Mohan CD, Bharathkumar H, Bulusu KC, Pandey V, Rangappa S, Fuchs JE, et al. Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. J Biol Chem. 2014;289(49):34296–307. https://doi.org/10.1074/jbc.M114.601104
  90. 90. Dai X, Wang L, Deivasigamni A, Looi CY, Karthikeyan C, Trivedi P, et al. A novel benzimidazole derivative, MBIC inhibits tumor growth and promotes apoptosis via activation of ROS-dependent JNK signaling pathway in hepatocellular carcinoma. Oncotarget. 2017;8(8):12831–42. https://doi.org/10.18632/oncotarget.14606
  91. 91. Singh AK, Roy NK, Anip A, Banik K, Monisha J, Bordoloi D, et al. Different methods to inhibit chemoresistance in hepatocellular carcinoma. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 373–98. https://doi.org/10.1142/9789813208575_0013
  92. 92. Wang S, Wang H, Sun B, Li D, Wu J, Li J, et al. Acetyl-11-keto-β-boswellic acid triggers premature senescence via the induction of DNA damage accompanied by impairment of DNA repair genes in hepatocellular carcinoma cells in vitro and in vivo. Fundam Clin Pharmacol. 2020;34(1):65–76. https://doi.org/10.1111/fcp.12488
  93. 93. Zheng P, Huang Z, Tong DC, Zhou Q, Tian S, Chen BW, et al. Frankincense and myrrh attenuate hepatocellular carcinoma by regulating tumor blood vessel development through multiple epidermal growth factor receptor-mediated signaling pathways. World J Gastrointest Oncol. 2022;14(2):450. https://doi.org/10.4251/wjgo.v14.i2.450
  94. 94. Sailo BL, Monisha J, Jaiswal A, Prakash J, Roy NK, Thakur KK, et al. Molecular alterations involved in pancreatic cancer chemoresistance and chemosensitization strategies. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 557–81. https://doi.org/10.1142/9789813208575_0018
  95. 95. Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, et al. Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol. 2023;14:1187181. https://doi.org/10.3389/fphar.2023.1187181
  96. 96. Monisha J, Roy NK, Sharma A, Banik K, Padmavathi G, Bordoloi D, et al. Chemoresistance and chemosensitization in melanoma. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 479–527. https://doi.org/10.1142/9789813208575_0016
  97. 97. Hakkim FL, Bakshi HA, Khan S, Nasef M, Farzand R, Sam S, et al. Frankincense essential oil suppresses melanoma cancer through downregulation of Bcl-2/Bax cascade signaling and ameliorates hepatotoxicity via phase I and II drug metabolizing enzymes. Oncotarget. 2019;10(37):3472. https://doi.org/10.18632/oncotarget.26930
  98. 98. Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep. 2022;10:goac035. https://doi.org/10.1093/gastro/goac035
  99. 99. Huang G, Yang J, Zhang L, Cao L, Zhang M, Niu X, et al. Inhibitory effect of 11-carbonyl-beta-boswellic acid on non-small cell lung cancer H446 cells. Biochem Biophys Res Commun. 2018;503(4):2202–05. https://doi.org/10.1016/j.bbrc.2018.06.137
  100. 100. Qurishi Y, Hamid A, Sharma PR, Wani ZA, Mondhe DM, Singh SK, et al. PARP cleavage and perturbance in mitochondrial membrane potential by 3-alpha-propionyloxy-beta-boswellic acid results in cancer cell death and tumor regression in murine models. Future Oncol. 2012;8(7):867–81. https://doi.org/10.2217/fon.12.68
  101. 101. Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK. Acetyl-11-keto-β-boswellic acid modulates membrane dynamics in benzo(a)pyrene-induced lung carcinogenesis. Mol Cell Biochem. 2019;460:17–27. https://doi.org/10.1007/s11010-019-03566-z
  102. 102. Lv M, Zhuang X, Zhang Q, Cheng Y, Wu D, Wang X, et al. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction and autophagy suppression via p21-dependent signaling pathway. Cell Biol Toxicol. 2021;37(2):209–28. https://doi.org/10.1007/s10565-020-09541-5
  103. 103. Gong C, Li W, Wu J, Li YY, Ma Y, Tang LW. Acetyl-11-keto-β-boswellic acid AKBA inhibits radiotherapy resistance in lung cancer by inhibiting maspin methylation and regulating the AKT/FOXO1/p21 axis. J Radiat Res. 2022;64(1):33–43. https://doi.org/10.1093/jrr/rrac064
  104. 104. Roy NK, Sharma A, Singh AK, Bordoloi D, Sailo BL, Monisha J, et al. Bladder cancer: chemoresistance and chemosensitization. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific: 2018. p. 51–80. https://doi.org/10.1142/9789813208575_0003
  105. 105. Halaseh SA, Halaseh S, Alali Y, Ashour ME, Alharayzah MJ. A review of the etiology and epidemiology of bladder cancer: all you need to know. Cureus. 2022;14(7). https://doi.org/10.7759/cureus.27330
  106. 106. Mattiuzzi C, Lippi G. Cancer statistics: A comparison between world health organization (WHO) and global burden of disease (GBD). Eur J Public Health. 2020;30(5):1026–27. https://doi.org/10.1093/eurpub/ckz216
  107. 107. Asthana S, Busa V, Labani S. Oral contraceptives use and risk of cervical cancer- A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;247:163–75. https://doi.org/10.1016/j.ejogrb.2020.02.014

Downloads

Download data is not yet available.