Research Articles
Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II
Bivalent nickel exposure induced mitotic toxicity in onion root tips
Department of Biotechnology, Laboratory of Plant and Environmental Engineering, Rama Devi Women’s University, Bhubaneswar 751 022, Odisha, India
Department of Biotechnology, Laboratory of Plant and Environmental Engineering, Rama Devi Women’s University, Bhubaneswar 751 022, Odisha, India
Abstract
Nickel (Ni) is utilized across multiple industries, resulting in significant environmental contamination and exhibiting various genotoxic effects on plants and animals due to its release into the external environment. This study evaluates the cytotoxic effects of different doses of nickel on onion (Allium cepa L.) root tips. To evaluate the sensitivity of Nickel, bulbs of onion were treated at 10, 25, 50 and 100 ppm along with a control (0 ppm) using NiCl2 salt as the source of Nickel. At elevated concentrations of nickel (100 ppm) in a hydroponic study, the onion roots exhibited browning and translucency, accompanied by a retardation of growth. Various chromosomal anomalies, including chromosomal breaks, laggards, vagrant chromosomes, bridges, distorted chromosomes, sticky chromosomes, c-mitosis etc. were observed following a 24 hr exposure to toxic doses of nickel. Both types of chromosomal abnormalities, namely spindle fibre abnormality (SFA) and chromosomal abnormality (CA), were observed under Ni treatment. The evaluation of cell death in the treated roots was done using the Evans blue dye test. Uptake of Evans blue by the root cells demonstrated the cell death parameter, which served as an indicator of cytotoxicity.
References
- 1. Naz M, Ghani MI, Sarraf M, Liu M, Fan X. Ecotoxicity of nickel and its possible remediation. Phytoremediation. 2022. p. 297–322. https://doi.org/10.1016/b978-0-323-89874-4.00022-4
- 2. Muhammad BH, Shafaqat A, Aqeel A, Saadia H, Muhammad AF, Basharat A, et al. Morphological, physiological and biochemical responses of plants to nickel stress: A review. Afr J Agric Res. 2013;8(17):1596–602. https://doi.org/10.5897/ajar12.407
- 3. Ghazanfar S, Komal A, Waseem A, Hassan W, Iqbal RJ, Toor S, et al. Physiological effects of nickel contamination on plant growth. Nat Volatiles Essent Oils. 2021;8:13457–69.
- 4. Nriagu JO. A global assessment of natural sources of atmospheric trace metals. Nature. 1989;338(6210):47–9. https://doi.org/10.1038/338047a0
- 5. Cempel M, Nikel G. Nickel: A review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15(3):375–82.
- 6. Chen C, Huang D, Liu J. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean- Soil, Air, Water. 2009;37(4–5):304–13. https://doi.org/10.1002/clen.200800199
- 7. Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV . Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol. 2013;10(5):1129–40. https://doi.org/10.1007/S13762-013-0245-9
- 8. Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M. Macronutrient composition of nickel-treated wheat under different sulfur concentrations in the nutrient solution. Environ Sci Pollut Res. 2016;23(6):5902–14. https://doi.org/10.1007/s11356-015-5823-6
- 9. Melo EC de, da Silva Pinheiro R, Costa BS, Lima RMT, Dias ACS, de Jesus Aguiar dos Santos T, et al. Allium cepa as a toxicogenetic investigational tool for plant extracts: A systematic review. Chem Biodivers. 2024;21(12). https://doi.org/10.1002/cbdv.202401406
- 10. Manna I, Mishra S, Bandyopadhyay M. In vivo genotoxicity assessment of nickel oxide nanoparticles in the model plant Allium cepa L. Nucleus. 2021;65(2):203–14. https://doi.org/10.1007/s13237-021-00377-w
- 11. Grant WF. Chromosome aberrations in plants as a monitoring system. Environ Health Perspect. 1978;37–43. https://doi.org/10.2307/3428860
- 12. Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, et al. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia. 2018;71(3):191–209. https://doi.org/10.1080/00087114.2018.1503496
- 13. Eleyowo OO, Amusa OD, Omotayo MA, Akpan UU. An investigation of phytochemicals, antioxidants and genotoxic potentials of Datura metel L. Ann West Univ Timisoara Ser Biol. 2018;139–48.
- 14. Sabeen M, Mahmood Q, Bhatti ZA, Faridullah, Irshad M, Bilal M, et al. Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi J Biol Sci. 2020;27(5):1368–74. https://doi.org/10.1016/j.sjbs.2019.12.011
- 15. Fiskesjö G. The Allium test as a standard in environmental monitoring. Hereditas. 1985;102:99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x
- 16. Wijeyaratne WMDN, Wickramasinghe PGMU. Chromosomal abnormalities in Allium cepa induced by treated textile effluents: spatial and temporal variations. J Toxicol. 2020;2020:1–10. https://doi.org/10.1155/2020/8814196
- 17. Medeiros MG, Takahashi CS. Effects of Luffa operculata on Allium cepa root-tip cells. Cytologia. 1987;52(2):255–9. https://doi.org/10.1508/cytologia.52.255
- 18. Baker JC, Mock NM. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult. 1994;39:7–12. https://doi.org/10.1007/bf00037585
- 19. Pradhan C, Routray D, Das AB. Silver nitrate mediated oxidative stress induced genotoxicity of Allium cepa L. Cytologia. 2017;82(2):183–91. https://doi.org/10.1508/cytologia.82.183
- 20. Souguir D, Ferjani E, Ledoigt G, Goupil P. Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots. Ecotoxicology. 2011;20:329–36. https://doi.org/10.1007/s10646-010-0582-0
- 21. Ferrari B, Radetski CM, Veber AM, Férard JF. Ecotoxicological assessment of solid wastes: A combined liquid and solid-phase testing approach using a battery of bioassays and biomarkers. Environ Toxicol Chem. 1999;18:1195–202. https://doi.org/10.1002/etc.5620180618
- 22. Ozyigit II, Can H, Dogan I. Phytoremediation using genetically engineered plants to remove metals: A review. Environ Chem Lett. 2021;19:669–98. https://doi.org/10.1007/s10311-020-01095-6
- 23. Pharmawati M, Wrasiati LP. Chromosomal and nuclear alteration induced by nickel nitrate in the root tips of Allium Cepa var. aggregatum. Pollution. 2023;9(2):702–11. https://doi.org/10.22059/poll.2022.349167.1634
- 24. Okorie Asita A, Moramang S, Rants’o T, Magama S . Modulation of mutagen-induced genotoxicity by vitamin C and medicinal plants in Allium cepa L. Caryologia. 2017;70:151–65. https://doi.org/10.1080/00087114.2017.1311166
- 25. Alias C, Feretti D, Viola GV, Zerbini I, Bisceglie F, Pelosi G, et al. Allium cepa tests: A plant-based tool for the early evaluation of toxicity and genotoxicity of newly synthetized antifungal molecules. Mutat Res Genet Toxicol Environ Mutagen. 2023;889:503654. https://doi.org/10.1016/j.mrgentox.2023.503654
- 26. Al Achkar W, Sabatier L, Dutrillaux B. How are sticky chromosomes formed?. Ann Genet. 1989;32:10–5.
- 27. Sajitha MK, Thoppil JE. Screening of cytotoxicity, metabolic inhibition and possible apoptotic cell death induced by Gomphostemma heyneanum Wall. ex Benth. var. heyneanum using Allium cepa root tips. Int J Pharm Biol Sci. 2018;8:56–64.
- 28. Kuchy AH, Wani AA, Kamili AN. Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa. Environ Sci Pollut Res. 2015;23(7):6895–906. https://doi.org/10.1007/s11356-015-5912-6
- 29. Amari T, Ghnaya T, Abdelly C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S Afr J Bot. 2017;111:99–110. https://doi.org/10.1016/j.sajb.2017.03.011
- 30. de Santana da Silva J, Heck MC, Buzo MG, Almeida IV, Vicentini VEP. Evaluation of textile laundry effluents and their cytotoxic effects on Allium cepa. Environ Sci Pollut Res. 2018;25:27890–8. https://doi.org/10.1007/s11356-018-2813-5
- 31. Firbas P, Amon T. Chromosome damage studies in the onion plant Allium cepa L. Caryologia. 2014;67(1):25–35. https://doi.org/10.1080/00087114.2014.891696
- 32. Krishna G, Hayashi M. In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutat Res Fundam Mol Mech Mutagen. 2000;455:155–66. https://doi.org/10.1016/s0027-5107(00)00117-2
- 33. Fenech M, Kirsch-Volders M, Natarajan AT, Surrallés J, Crott JW, Parry J, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26:125–32. https://doi.org/10.1093/mutage/geq052
- 34. Sarac I, Bonciu E, Butnariu M, Petrescu I, Madosa E. Evaluation of the cytotoxic and genotoxic potential of some heavy metals by use of Allium test. Caryologia. 2019;72:37–43. https://doi.org/10.13128/cayologia-256
- 35. Türkoğlu Ş. Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutat Res Genet Toxicol Environ Mutagen. 2007;626:4–14. https://doi.org/10.1016/j.mrgentox.2006.07.006
- 36. Kumar G, Rai P. Comparative genotoxic potential of mercury and cadmium in soybean. Turk J Biol. 2007;31:13–8.
- 37. Streffer C, Müller WU, Wuttke K. The Formation of micronuclei after exposure to ionizing radiation. In: Obe G, Natarajan AT, editor. Chromosomal alterations. Heidelberg: Springer. 1994. p. 214–22. https://doi.org/10.1007/978-3-642-78887-1_22
- 38. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R. Uncommon heavy metals, metalloids and their plant toxicity: A review. In: Lichtfouse E, editor. Organic farming, pest control and remediation of soil pollutants. sustainable agriculture reviews, vol 1. Dordrecht: Springer. 2010. p. 275–317. https://doi.org/10.1007/s10311-008-0159-9
- 39. Su C, Haskins AH, Kato TA. Micronuclei formation analysis after ionizing radiation. Methods Mol Biol. 2019;1984:23–29. https://doi.org/10.1007/978-1-4939-9432-8_3
- 40. Demirtaş G, Çavuşoğlu K, Yalçin E. Aneugenic, clastogenic and multi-toxic effects of diethyl phthalate exposure. Environ Sci Pollut Res. 2020;27:5503–10. https://doi.org/10.1007/s11356-019-07339-5
- 41. Vijayaraghavareddy P, Adhinarayanreddy V, Vemanna RS, Sreeman S, Makarla U. Quantification of membrane damage/cell death using Evan’s blue staining technique. Bio-protocol. 2017;7:e2519. https://doi.org/10.21769/bioprotoc.2519
- 42. Hossain J, Azam MG, Gaber A, Aftab T, Hossain A. Cytotoxicity of metal/metalloids’ pollution in plants. In: Aftab T, Khalid H, editors. Metals metalloids soil plant water systems. New York: Academic Press. 2022. p. 371–94. https://doi.org/10.1016/b978-0-323-91675-2.00017-2
- 43. Lehotai N, Pető A, Bajkán S, Erdei L, Tari I, Kolbert Z . In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol Plant. 2011;33:2199–207. https://doi.org/10.1007/s11738-011-0759-z
Downloads
Download data is not yet available.