Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Bivalent nickel exposure induced mitotic toxicity in onion root tips

DOI
https://doi.org/10.14719/pst.10435
Submitted
3 July 2025
Published
26-09-2025
Versions

Abstract

Nickel (Ni) is utilized across multiple industries, resulting in significant environmental contamination and exhibiting various genotoxic effects on plants and animals due to its release into the external environment. This study evaluates the cytotoxic effects of different doses of nickel on onion (Allium cepa L.) root tips. To evaluate the sensitivity of Nickel, bulbs of onion were treated at 10, 25, 50 and 100 ppm along with a control (0 ppm) using NiCl2 salt as the source of Nickel. At elevated concentrations of nickel (100 ppm) in a hydroponic study, the onion roots exhibited browning and translucency, accompanied by a retardation of growth. Various chromosomal anomalies, including chromosomal breaks, laggards, vagrant chromosomes, bridges, distorted chromosomes, sticky chromosomes, c-mitosis etc. were observed following a 24 hr exposure to toxic doses of nickel. Both types of chromosomal abnormalities, namely spindle fibre abnormality (SFA) and chromosomal abnormality (CA), were observed under Ni treatment. The evaluation of cell death in the treated roots was done using the Evans blue dye test. Uptake of Evans blue by the root cells demonstrated the cell death parameter, which served as an indicator of cytotoxicity.

References

  1. 1. Naz M, Ghani MI, Sarraf M, Liu M, Fan X. Ecotoxicity of nickel and its possible remediation. Phytoremediation. 2022. p. 297–322. https://doi.org/10.1016/b978-0-323-89874-4.00022-4
  2. 2. Muhammad BH, Shafaqat A, Aqeel A, Saadia H, Muhammad AF, Basharat A, et al. Morphological, physiological and biochemical responses of plants to nickel stress: A review. Afr J Agric Res. 2013;8(17):1596–602. https://doi.org/10.5897/ajar12.407
  3. 3. Ghazanfar S, Komal A, Waseem A, Hassan W, Iqbal RJ, Toor S, et al. Physiological effects of nickel contamination on plant growth. Nat Volatiles Essent Oils. 2021;8:13457–69.
  4. 4. Nriagu JO. A global assessment of natural sources of atmospheric trace metals. Nature. 1989;338(6210):47–9. https://doi.org/10.1038/338047a0
  5. 5. Cempel M, Nikel G. Nickel: A review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15(3):375–82.
  6. 6. Chen C, Huang D, Liu J. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean- Soil, Air, Water. 2009;37(4–5):304–13. https://doi.org/10.1002/clen.200800199
  7. 7. Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV . Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol. 2013;10(5):1129–40. https://doi.org/10.1007/S13762-013-0245-9
  8. 8. Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M. Macronutrient composition of nickel-treated wheat under different sulfur concentrations in the nutrient solution. Environ Sci Pollut Res. 2016;23(6):5902–14. https://doi.org/10.1007/s11356-015-5823-6
  9. 9. Melo EC de, da Silva Pinheiro R, Costa BS, Lima RMT, Dias ACS, de Jesus Aguiar dos Santos T, et al. Allium cepa as a toxicogenetic investigational tool for plant extracts: A systematic review. Chem Biodivers. 2024;21(12). https://doi.org/10.1002/cbdv.202401406
  10. 10. Manna I, Mishra S, Bandyopadhyay M. In vivo genotoxicity assessment of nickel oxide nanoparticles in the model plant Allium cepa L. Nucleus. 2021;65(2):203–14. https://doi.org/10.1007/s13237-021-00377-w
  11. 11. Grant WF. Chromosome aberrations in plants as a monitoring system. Environ Health Perspect. 1978;37–43. https://doi.org/10.2307/3428860
  12. 12. Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, et al. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia. 2018;71(3):191–209. https://doi.org/10.1080/00087114.2018.1503496
  13. 13. Eleyowo OO, Amusa OD, Omotayo MA, Akpan UU. An investigation of phytochemicals, antioxidants and genotoxic potentials of Datura metel L. Ann West Univ Timisoara Ser Biol. 2018;139–48.
  14. 14. Sabeen M, Mahmood Q, Bhatti ZA, Faridullah, Irshad M, Bilal M, et al. Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi J Biol Sci. 2020;27(5):1368–74. https://doi.org/10.1016/j.sjbs.2019.12.011
  15. 15. Fiskesjö G. The Allium test as a standard in environmental monitoring. Hereditas. 1985;102:99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x
  16. 16. Wijeyaratne WMDN, Wickramasinghe PGMU. Chromosomal abnormalities in Allium cepa induced by treated textile effluents: spatial and temporal variations. J Toxicol. 2020;2020:1–10. https://doi.org/10.1155/2020/8814196
  17. 17. Medeiros MG, Takahashi CS. Effects of Luffa operculata on Allium cepa root-tip cells. Cytologia. 1987;52(2):255–9. https://doi.org/10.1508/cytologia.52.255
  18. 18. Baker JC, Mock NM. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult. 1994;39:7–12. https://doi.org/10.1007/bf00037585
  19. 19. Pradhan C, Routray D, Das AB. Silver nitrate mediated oxidative stress induced genotoxicity of Allium cepa L. Cytologia. 2017;82(2):183–91. https://doi.org/10.1508/cytologia.82.183
  20. 20. Souguir D, Ferjani E, Ledoigt G, Goupil P. Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots. Ecotoxicology. 2011;20:329–36. https://doi.org/10.1007/s10646-010-0582-0
  21. 21. Ferrari B, Radetski CM, Veber AM, Férard JF. Ecotoxicological assessment of solid wastes: A combined liquid and solid-phase testing approach using a battery of bioassays and biomarkers. Environ Toxicol Chem. 1999;18:1195–202. https://doi.org/10.1002/etc.5620180618
  22. 22. Ozyigit II, Can H, Dogan I. Phytoremediation using genetically engineered plants to remove metals: A review. Environ Chem Lett. 2021;19:669–98. https://doi.org/10.1007/s10311-020-01095-6
  23. 23. Pharmawati M, Wrasiati LP. Chromosomal and nuclear alteration induced by nickel nitrate in the root tips of Allium Cepa var. aggregatum. Pollution. 2023;9(2):702–11. https://doi.org/10.22059/poll.2022.349167.1634
  24. 24. Okorie Asita A, Moramang S, Rants’o T, Magama S . Modulation of mutagen-induced genotoxicity by vitamin C and medicinal plants in Allium cepa L. Caryologia. 2017;70:151–65. https://doi.org/10.1080/00087114.2017.1311166
  25. 25. Alias C, Feretti D, Viola GV, Zerbini I, Bisceglie F, Pelosi G, et al. Allium cepa tests: A plant-based tool for the early evaluation of toxicity and genotoxicity of newly synthetized antifungal molecules. Mutat Res Genet Toxicol Environ Mutagen. 2023;889:503654. https://doi.org/10.1016/j.mrgentox.2023.503654
  26. 26. Al Achkar W, Sabatier L, Dutrillaux B. How are sticky chromosomes formed?. Ann Genet. 1989;32:10–5.
  27. 27. Sajitha MK, Thoppil JE. Screening of cytotoxicity, metabolic inhibition and possible apoptotic cell death induced by Gomphostemma heyneanum Wall. ex Benth. var. heyneanum using Allium cepa root tips. Int J Pharm Biol Sci. 2018;8:56–64.
  28. 28. Kuchy AH, Wani AA, Kamili AN. Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa. Environ Sci Pollut Res. 2015;23(7):6895–906. https://doi.org/10.1007/s11356-015-5912-6
  29. 29. Amari T, Ghnaya T, Abdelly C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S Afr J Bot. 2017;111:99–110. https://doi.org/10.1016/j.sajb.2017.03.011
  30. 30. de Santana da Silva J, Heck MC, Buzo MG, Almeida IV, Vicentini VEP. Evaluation of textile laundry effluents and their cytotoxic effects on Allium cepa. Environ Sci Pollut Res. 2018;25:27890–8. https://doi.org/10.1007/s11356-018-2813-5
  31. 31. Firbas P, Amon T. Chromosome damage studies in the onion plant Allium cepa L. Caryologia. 2014;67(1):25–35. https://doi.org/10.1080/00087114.2014.891696
  32. 32. Krishna G, Hayashi M. In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutat Res Fundam Mol Mech Mutagen. 2000;455:155–66. https://doi.org/10.1016/s0027-5107(00)00117-2
  33. 33. Fenech M, Kirsch-Volders M, Natarajan AT, Surrallés J, Crott JW, Parry J, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26:125–32. https://doi.org/10.1093/mutage/geq052
  34. 34. Sarac I, Bonciu E, Butnariu M, Petrescu I, Madosa E. Evaluation of the cytotoxic and genotoxic potential of some heavy metals by use of Allium test. Caryologia. 2019;72:37–43. https://doi.org/10.13128/cayologia-256
  35. 35. Türkoğlu Ş. Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutat Res Genet Toxicol Environ Mutagen. 2007;626:4–14. https://doi.org/10.1016/j.mrgentox.2006.07.006
  36. 36. Kumar G, Rai P. Comparative genotoxic potential of mercury and cadmium in soybean. Turk J Biol. 2007;31:13–8.
  37. 37. Streffer C, Müller WU, Wuttke K. The Formation of micronuclei after exposure to ionizing radiation. In: Obe G, Natarajan AT, editor. Chromosomal alterations. Heidelberg: Springer. 1994. p. 214–22. https://doi.org/10.1007/978-3-642-78887-1_22
  38. 38. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R. Uncommon heavy metals, metalloids and their plant toxicity: A review. In: Lichtfouse E, editor. Organic farming, pest control and remediation of soil pollutants. sustainable agriculture reviews, vol 1. Dordrecht: Springer. 2010. p. 275–317. https://doi.org/10.1007/s10311-008-0159-9
  39. 39. Su C, Haskins AH, Kato TA. Micronuclei formation analysis after ionizing radiation. Methods Mol Biol. 2019;1984:23–29. https://doi.org/10.1007/978-1-4939-9432-8_3
  40. 40. Demirtaş G, Çavuşoğlu K, Yalçin E. Aneugenic, clastogenic and multi-toxic effects of diethyl phthalate exposure. Environ Sci Pollut Res. 2020;27:5503–10. https://doi.org/10.1007/s11356-019-07339-5
  41. 41. Vijayaraghavareddy P, Adhinarayanreddy V, Vemanna RS, Sreeman S, Makarla U. Quantification of membrane damage/cell death using Evan’s blue staining technique. Bio-protocol. 2017;7:e2519. https://doi.org/10.21769/bioprotoc.2519
  42. 42. Hossain J, Azam MG, Gaber A, Aftab T, Hossain A. Cytotoxicity of metal/metalloids’ pollution in plants. In: Aftab T, Khalid H, editors. Metals metalloids soil plant water systems. New York: Academic Press. 2022. p. 371–94. https://doi.org/10.1016/b978-0-323-91675-2.00017-2
  43. 43. Lehotai N, Pető A, Bajkán S, Erdei L, Tari I, Kolbert Z . In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol Plant. 2011;33:2199–207. https://doi.org/10.1007/s11738-011-0759-z

Downloads

Download data is not yet available.