Isolation, characterization and quantification of a pentacyclic triterpinoid compound ursolic acid in Scabiosa palaestina L. distributed in the north of Iraq
DOI:
https://doi.org/10.14719/pst.1398Keywords:
Ursolic acid, HPTLC, Pentacyclic triterpenoids, Scabiosa palaestina L.Abstract
Ursolic acid (UA, 3 ?-hydroxy-urs-12-en-28-oic acid) are isomeric triterpenic acids. The high quantities of pentacyclic triterpenoids in Scabiosa species seems to be obvious and there is an evidence that most of pentacyclic triterpenoids that have been isolated are saponins. This is one of the most important characteristic of the genus Scabiosa, the main aglycones are ursolic acid and oleanolic acid. In the current study, isolation from the aerial part and roots of Scabiosa palaestina L. was performed using Preparative HPLC. Furthermore, detection and quantitation of ursolic acid was performed by high performance thin layer chromatography (HPTLC). The identification of isolated triterpenoid involves two methods including FT-IR coupled with LC-MS/MS that have been used for the simultaneous determination of the isolated UA. Quantitative analysis of Ursolic acid content in chloroform fractions revealed that both of the aerial parts and roots contain comparable concentration of 0.052 and 0.054 mg/ml respectively. The FT-IR and LC-MS/MS spectra of the isolated compound shows good agreement with those reported in literatures of Ursolic acid. Quantitative concentration of UA in chloroform fraction revealed that aerial parts and roots contain comparable concentrations and the spectral data for the isolated unknown were in good agreement with those reported in literature of UA.
Downloads
References
George, E.B.; Ronald, J.T. Toxic Plants of North America; John Wiley and Sons: Oxford, UK, 2013; pp. 319-322.
Pinto D, Rahmouni N, Beghidja N, Silva A. Scabiosa Genus: A Rich Source of Bioactive Metabolites. Medicines. 2018;5(4):110.https://doi.org/10.3390/medicines5040110
Pichersky, E.; Raguso, R.A.Why do plants produce so many terpenoid componds? New Phytol. 2016, 2016.https://doi.org/10.1111/nph.14178
Singh, B.; Sharma, R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015, 5, 129-151.https://doi.org/10.1007/s13205-014-0220-2
Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB. Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer. 2010;2428-66.https://doi.org/10.3390/toxins2102428
Kamble SM, Goyal SN, Patil CR. RSC Advances Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy?: a review. RSC Adv [Internet]. 2014;4:33370-82. Available from: http://dx.doi.org/10.1039/C4RA02784A
Chudzik M, Korzonek-szlacheta I, Król W. Triterpenes as Potentially Cytotoxic Compounds. 2015;1610-25.https://doi.org/10.3390/molecules20011610
Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic Triterpene Distribution in Various Plants - Rich Sources for a New Group of Multi-potent Plant Extracts. 2016;2016-31.https://doi.org/10.3390/molecules14062016
Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic acid and its derivatives: Biological activities and therapeutic potential in chronic diseases. Molecules. 2017;22(11).https://doi.org/10.3390/molecules22111915
Gao YS, Yuan Y, Song G, Lin SQ. Inhibitory effect of ursolic acid and oleanolic acid from Eriobotrya fragrans on A549 cell viability in vivo. Genet Mol Res. 2016;15(2):1-8.https://doi.org/10.4238/gmr.15028642
Xue S, Yin J, Shao J, Yu Y, Yang L, Wang Y, et al. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Mol Ther [Internet]. 2017;25(2):443-55. Available from: http://dx.doi.org/10.1016/j.ymthe.2016.11.008
Beaufay, C.; Hérent, M.-F.; Quetin-Leclercq, J.; Bero, J. In vivo anti-malarial activity and toxicity studies of triterpenic esters isolated from Keetia leucantha and crude extracts. Malar. J. 2017, 16, 406.https://doi.org/10.1186/s12936-017-2054-y
Pan Y, Zhou F, Song Z, Huang H, Chen Y, Shen Y, et al. Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)-(1-7) upregulation. Biomed Pharmacother [Internet]. 2018;97(August 2017):1694-700. Available from: https://doi.org/10.1016/j.biopha.2017.11.151
Bernabé-García Á, Armero-Barranco D, Liarte S, Ruzafa-Martínez M, Ramos-Morcillo AJ, Nicolás FJ. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation. PLoS One. 2017;12(2):1-24.https://doi.org/10.1371/journal.pone.0172574
Naumoska K, Simonovska B, Albreht A, Vovk I. TLC and TLC-MS screening of ursolic, oleanolic and betulinic acids in plant extracts. J Planar Chromatogr - Mod TLC. 2013;26(2):125-31.https://doi.org/10.1556/JPC.26.2013.2.4
Al-Dahan N.: Phytochemical investigation of Melia azedarach cultivated in Iraq. MSc thesis 2016; Pp 66.
Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry. 2020 Mar 1;148:80-9.https://doi.org/10.1016/j.plaphy.2020.01.006
Pironi AM, Araújo PR De, Fernandes MA. Characteristics , biological properties and analytical methods of ursolic acid?: a review. 2017;8347(October).https://doi.org/10.1080/10408347.2017.1390425
Tan ZR, Chen Y, Zhou G, Cao S, Peng XD, Wang YC, et al. LC-MS-MS quantitative determination of ursolic acid in human plasma and its application to pharmacokinetic studies. Chromatographia. 2010;72(11-12):1107-13.https://doi.org/10.1365/s10337-010-1797-1
NAIKA HR, BHAVANA S, TEIXEIRA DA SILVA JA, LINGARAJU K, MOHAN VC, KRISHNA V. In silico and in vivo wound healing studies of ursolic acid isolated from Clematis gouriana against GSK-3 beta. Nusant Biosci. 2016;8(2):232-44.https://doi.org/10.13057/nusbiosci/n080216
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Amjed Haseeb Khamees, Enas J kadhim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).