Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 9 No. 3 (2022)

GC-MS profiling, anti-oxidant and anti-diabetic assessments of extracts from microalgae Scenedesmus falcatus (KU.B1) and Chlorella sorokiniana (KU.B2)

DOI
https://doi.org/10.14719/pst.1560
Submitted
25 October 2021
Published
18-05-2022 — Updated on 01-07-2022
Versions

Abstract

Microalgae are a potentially valuable source in the food, pharmaceutical and nutraceutical sectors. While biological activities surveys have investigated the pharmaceutical properties of a few microalgae species, there are not many reports covering biological activity studies. This study was carried out to identify the metabolites by gas chromatography-mass spectrometry and evaluate the anti-oxidant, anti-diabetic properties of green algae extracts, Chlorella sorokiniana (KU.B2) and Scenedesmus falcatus (KU.B1). A total of 51 different chemical constituents were detected and tentatively identified. The primary compounds in both microalgae extracts included (R)-2-hexanol (38.67% in C. sorokiniana and 23.53% in S. falcatus), n-hexadecanoic acid (13.58% in C. sorokiniana and 18.94% in S. falcatus) and octadecanoic acid (22.30% in C. sorokiniana and 32.67% in S. falcatus). According to the profiling results, the C. sorokiniana extract exhibited greater anti-oxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (IC50 = 480.30 ±?14.85 µg ml-1), nitric oxide (NO) radical scavenging (562.73 ±?3.52 µg mL-1) and ferric reducing anti-oxidant power (FRAP) of 58.51 ± 2.42 mgTE g-1. Comparatively, the C. sorokiniana extract had higher contents of alpha-glucosidase and alpha-amylase (IC50 = 491.22 ± 78.41 and 2,817.00 ±143.04 µg mL-1, respectively) than the S. falcatus extract. This first report demonstrated anti-diabetic effect of both extracts on diabetic enzymes. The results confirm microalgae's anti-oxidant and anti-diabetic properties and suggest their potential benefits in cosmeceutical, nutraceutical and pharmaceutical applications.

References

  1. Sathasivam R, Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs. 2018;16:26. https://doi.org/10.3390/md16010026
  2. Wan XZ, Li TT, Zhong RT, Chen HB, Xia X, Gao LY et al. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats. Food Chem Toxicol. 2019;128:233-39. https://doi.org/ 10.1016/j.fct.2019.04.017
  3. Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Adv. 2012;30:709-32. https://doi.org/10.1016/j.biotechadv.2012.01.001
  4. Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides in human health: a challenges and opportunities. Nutrients 2018;10:1738. https://doi.org/10.3390/nu10111738
  5. Jerez-Martel I, García-Poza S, Rodríguez-Martel G, Rico M, Afonso-Olivares C, Gómez-Pinchett JL. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual. 2017;1-8. https://doi.org/10.1155/2017/2924508
  6. Xu SY, Huang X, Cheong KL. Recent advances in marine algae polysaccharides: isolation, structure, and activities. Mar. Drugs. 2017;15:388. https://doi.org/10.3390/md15120388
  7. Hosseini TA, Shariati M. Dunaliella biotechnology: methods and applications. J Appl Microbiol. 2009;107:14-35. https://doi.org/10.1111/j.1365-2672.2009.04153.x
  8. Al-Saif SS, Abdel-Raouf N, El-Wazanani HA, Aref IA. Antibacterial substances from marine algae isolated from Jeddah coast of red sea, Saudi Arabia. Saudi J Biol Sci. 2014;21:57-64. https://doi.org/10.1016/j.sjbs.2013.06.001
  9. Bhagavathy S, Sumathi P, Bell IJS. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pac J Trop Biomed. 2011;1:S1-S7. https://doi.org/10.1016/s2221-1691(11)60111-1
  10. Choo WT, Teoh ML, Phang SM, Convey P, Yap WH, Goh BH et al. Microalgae as potential anti-inflammatory natural product against human inflammatory skin diseases. Front Pharmacol. 2020;11: 1086. https://doi.org/10.3389/fphar.2020.01086
  11. Wang HM, Pan JL, Chen CY, Chiu CC, Yang MH, Chang HW et al. Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Proc Biochem. 2010;45:1865-72. https://doi.org/10.1016/j.procbio.2010.05.023
  12. Assunção MFG, Amaral R, Martins BC, Ferreira DJ, Ressurreição S, Santos DS et al. Screening microalgae as potential sources of antioxidants. J Appl Phycol. 2017;29:865-77. https://doi.org/10.1007/s10811-016-0980-7
  13. Zhao C, Yang C, Wai STC, Zhang Y, Portillo M, Paoli P et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr. 2018;59:830-47. https://doi.org/10.1080/10408398.2018.1501658
  14. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 Suppl. 2009;2:157-63. https://doi.org/10.2337/dc09-S302
  15. Emily J, Leroith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med. 2010;77:511-23. https://doi.org/10.1002/msj.20212
  16. Migdal C, Serres M. Reactive oxygen species and oxidative stress. Méd sci. 2011;27:405-12. https://doi.org/10.1051/medsci/2011274017
  17. Suksungworn R, Duangsrisai S. Phytochemical contents and antioxidant activity of medicinal plants from the Rubiaceae family in Thailand. Plant Science Today. 2021;8:24-31. https://doi.org/10.14719/pst.2021.8.1.882
  18. Suksungworn R, Andrade PB, Oliveira AP, Valentao P, Duangsrisai S, Gomes NGM. Inhibition of proinflammatory enzymes and attenuation of il-6 in lps-challenged raw 264.7 macrophages substantiates the ethnomedicinal use of the herbal drug Homalium bhamoense Cubitt and W.W.Sm. IntJ Mol Sci. 2020;21: 2421. https://doi.org/10.3390/ijms21072421
  19. Salman KA, Ashraf S. Reactive oxygen species: a link between chronic inflammation and cancer. Asia Pacific J Mol Biol & Biotechnol. 2015;21:42-49.
  20. Roy N, Laskar RA, Sk I, Kumari D, Ghosh T, Begum NA. A detailed study on the antioxidant activity of the stem bark of Dalbergia sissoo Roxb., an Indian medicinal plant. Food Chem. 2011;126:1115-21. https://doi.org/10.1016/j.foodchem.2010.11.143
  21. Dall TM, Yang W, Halder P, Pang B, Massoudi M, Wintfeld N, Semilla AP, Franz J, Hogan PF. The economic burden of elevated blood glucose levels in 2012: diagnosed and undiagnosed diabetes, gestational diabetes mellitus, and prediabetes. Diabetes Care. 2014;37:3173-79. https://doi.org/10.2337/dc14-1036
  22. Verspohl EJ. Novel pharmacological approaches to the treatment of type 2 diabetes. Pharmacol Rev. 2012;64:188-237. https://doi.org/10.1124/pr.110.003319
  23. Hinnen DA. Therapeutic options for the management of postprandial glucose in patients with type 2 diabetes on basal insulin. J Clin Diabetes. 2015;33:175-80. https://doi.org/10.2337/diaclin.33.4.175
  24. Ofosu FK, Elahi F, Daliri EB, Chelliah R, Ham HJ, Kim JH et al. Phenolic profile, antioxidant and antidiabetic potential exerted by millet grain varieties. Antioxidants. 2020;9:254. https://doi.org/10.3390/antiox9030254
  25. Nair SS, Kavrekar V, Mishra A. In-vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extractso. European J Experimen Bio. 2013;3:128-32.
  26. Hamed I. The evolution and versatility of microalgal biotechnology: A Review. Compr Rev Food Sci Food Saf. 2016;15:1104-23. https://doi.org/10.1111/1541-4337.12227
  27. Hartweg J, Perera R, Montori V, Dinneen S, Neil HA, Farmer JA. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;23:CD003205. https://doi.org/10.1002/14651858.CD003205.pub2
  28. Levasseur W, Perre P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv. 2020;41:1-21. https://doi.org/10.1016/j.biotechadv.2020.107545
  29. Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F et al. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes and Antibacterial Activities. Frontiers in Marine Science. 2016;3. https://doi.org/10.3389/fmars.2016.00068
  30. Patil L, Kaliwal BB. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess Biosyst Eng. 2019;42:979-94. https://doi.org/10.1007/s00449-019-02099-5
  31. Pantami HA, Ahamad Bustamam MS, Lee SY, Ismail IS, Mohd Faudzi SM, Nakakuni M, Shaari K. Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris. Mar. Drugs. 2020;18: 367. https://doi.org/10.3390/md18070367
  32. Dolganyuk V, Belova D, Babich O, Prosekov A, Ivanova S, Katserov D et al. Microalgae: A promising source of valuable bioproducts. Biomolecules. 2020; 10:1153. https://doi.org/10.3390/biom10081153
  33. Napolitano G, Fasciolo G, Salbitani G, Venditti P. Chlorella sorokiniana Dietary supplementation increases antioxidant capacities and reduces ROS release in mitochondria of hyperthyroid rat liver. Antioxidants. 2020;9(9):883. https://doi.org/10.3390/antiox9090883
  34. El-Fayoumy EA, Shanab SMM, Gaballa HS, Tantawy MA, Shalaby EA. Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complement Med Ther. 2021;21:51. https://doi.org/10.1186/s12906-020-03194-x
  35. Bito T, Okumura E, Fujishima M, Watanabe F. Potential of Chlorella as a dietary supplement to promote human health. nutrients. 2020;12:2524. https://doi.org/10.3390/nu12092524
  36. Miranda MS, Sato S, Mancini-Filho J. Antioxidant activity of the microalga Chlorella vulgaris cultured on special conditions. Boll Chim Farm. 2001;140:165-68.
  37. Afify AEMR, El Baroty GS, El Baz FK, Abd El Baky HH, Murad SA. Scenedesmus obliquus: Antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J Genet Eng Biotechnol. 2018;16:399-408. https://doi.org/10.1016/j.jgeb.2018.01.002
  38. Zaharieva MM, Zheleva-Dimitrova D, Rusinova-Videva S, Ilieva Y, Brachkova A, Balabanova V et al. Antimicrobial and antioxidant potential of Scenedesmus obliquus microalgae in the context of integral biorefinery concept. Molecules. 2022;27(2):519. https://doi.org/10.3390/molecules27020519
  39. Qi, J., Kim, S.M. ?-Glucosidase inhibitory activities of lutein and zeaxanthin purified from green alga Chlorella ellipsoidea. J Ocean Univ. China.2018;17:983-89. https://doi.org/10.1007/s11802-018-3465-2
  40. Kaeoboon, S, Suksungworn, R, Sanevas N. Toxicity response of Chlorella microalgae to glyphosate herbicide exposure based on biomass, pigment contents and photosynthetic efficiency. Plant Science Today. 2021;8:293-300. https://doi.org/10.14719/pst.2021.8.2.1068
  41. Benning C, Somerville RC. Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol. 1992;174:2352-60. https://doi.org/10.1128/jb.174.7.2352-2360.1992
  42. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200. https://doi.org/ 10.1038/1811199a0
  43. Ferreres F, Andrade C, Gomes NGM, Andrade PB, Gil-Izquierdo A, Pereira DM et al. Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Food Chem. 2021;342: 128323. https://doi.org/10.1016/j.foodchem.2020.128323
  44. Santos AB, Fernandes AS, Wagner R, Jacob-Lopes E, Zepka LQ. Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. J Appl Phycol. 2016;28:1561-70. https://doi.org/10.1007/s10811-015-0740-0
  45. Jacob-Lopes E, Franco TT. From oil refinery to microalgal biorefinery. J CO2 Utilization. 2013;2:1-7. https://doi.org/10.1016/j.jcou.2013.06.001
  46. Wathnani AH, Ara I, Tahmaz RR, AI-Dayel HT, Bakir AM. Bioactivity of natural compounds isolated from cyanobacteria and green algae against human pathogenic bacteria and yeast. J Medicinal Plants Res. 2012;6:3425-33. https://doi.org/10.5897/jmpr11.1746
  47. Nascimento TC, Nass PP, Fernandes AS, Vieira KR, Wagner R, Jacob-Lopes E et al. Exploratory data of the microalgae compounds for food purposes. Data in Brief. 2020;29: 105182. https://doi.org/10.1016/j.dib.2020.105182
  48. Hong JW, Jo SW, Kim OH, Jeong MR, Kim H, Park KM et al. Characterization of a korean domestic cyanobacterium Limnothrix sp. KNUA012 for biofuel feedstock. J Life Sci. 2016;26:460-67. https://doi.org/10.5352/jls.2016.26.4.460
  49. Yun HS, Kim YS, Yoon HS. Characterization of Chlorella sorokiniana and Chlorella vulgaris fatty acid components under a wide range of light intensity and growth temperature for their use as biological resources. Heliyon. 2020;6: e04447. https://doi.org/10.1016/j.heliyon.2020.e04447
  50. Patterson WG. The effect of culture conditions on the hydrocarbon content of Chlorella vulgaris. J Phycol. 1967;3:22-23. https://doi.org/10.1111/j.1529-8817.1967.tb04623.x
  51. Kalhor XA, Movafeghi A, Mohammadi-Nassab AD, Abedi E, Bahrami A. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar Pollut Bull. 2017;123:286-90. https://doi.org/10.1016/j.marpolbul.2017.08.045
  52. Jamil TS, Abdel Aty AM, Ghafar Hany HA, Abdo SM. Separation and identification of hydrocarbons and other organic compounds from Scenedesmus obliquusand three cyanobacterial species. Desalination Water Treat. 2014;57: 1-8. https://doi.org/10.1080/19443994.2014.972987
  53. Habibi Z, Imanpour NJ, Ramezanpour Z. Evaluation of antimicrobial activities of microalgae Scenedesmus dimorphus extracts against bacterial strains. Caspian J Environ Sci. 2018;16:25-36. https://doi.org/10.22124/CJES.2018.2779
  54. Lee GK, Shibamoto T. Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agr Food Chem. 2000:48:42090-44293. https://doi.org/10.1021/jf000442u
  55. Escarcega HG, Sánchez-Chávez E, Alvarez PS, Caballero SM, Parra SJM, Flores-Córdova MA et al. Determination of antioxidant phenolic, nutritional quality and volatiles in pomegranates (Punica granatum L.) cultivated in Mexico. Int J Food Prop. 2020;23:979-91. https://doi.org/10.1080/10942912.2020.1760879
  56. Kulapichitr F, Borompichaichartkul C, Pratontep S, Lopetcharat K, Boonbumrung S, Suppavorasatit I. Differences in volatile compounds and antioxidant activity of ripe and unripe green coffee beans (Coffea arabica L. ‘Catimor’). Acta Horticulturae. 2017;261-68. https://doi.org/10.17660/ActaHortic.2017.1179.41
  57. Elagbar ZA, Naik RR, Shakya AK, Bardaweel SK. Fatty acids analysis, antioxidant and biological activity of fixed oil of Annona muricata L. seeds. J Chem. 2016;1-6. https://doi.org/10.1155/2016/6948098
  58. Karimi E, Jaafar ZH, Ghasemzadeh A, Ebrahimi M. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol Res. 2015;48: 9 https://doi.org/10.1186/0717-6287-48-9
  59. Saeidi K, Alirezalu A, Akbari Z. Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran. Natural Prod Res. 2016;30. https://doi.org/10.1080/14786419.2015.1057728
  60. Sabudak T, Ozturk M, Goren AC, Kolak U, Topcu G. Fatty acids and other lipid composition of five Trifolium species with antioxidant activity. Pharm Biol. 2009;47: 137-41. https://doi.org/10.1080/13880200802439343
  61. Zadeh HE, Khodadadi M, Asadi F, Koohi MK, Eslami M, Hasani-Dizaj S et al. The antioxidant activity of palmitoleic acid on the oxidative stress parameters of palmitic acid in adult rat cardiomyocytes. Annals Military Health Sci Res. 2016;14: e11467. https://doi.org/10.5812/amh.11467
  62. Wang ZJ, Liang CL, Li GM, Yu CY, Yin M. Stearic acid protects primary cultured cortical neurons against oxidative stress. Acta Pharmacol Sinica. 2007;28:315-26. https://doi.org/10.1111/j.1745-7254.2007.00512.x
  63. Bharti SK, Krishnan S, Kumar A, Kumar A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther Adv Endocrinol Metab. 2018;9: 81-100. https://doi.org/10.1177/2042018818755019
  64. Chelladurai, MRG, Chinnachamy C. Alpha amylase and alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz J Pharm Sci. 2018;54: e17151. https://doi.org/10.1590/s2175-97902018000117151
  65. Wang Y, Liu F, Liang Z. Nutritional composition, ?-Glucosidase Inhibitory and antioxidant activities of Ophiopogon japonicus tubers. J Chem. 2015;1-7. https://doi.org/10.1155/2015/893074
  66. Balongun O, Oladosu I, Akinnusi A, Zhiqiang L. Fatty acids composition, ?-glucosidase inhibitory potential and cytotoxicity activity of Oncoba spinosa Forssk. Appl Chem. 2013;59:15630-641.
  67. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, Nazrul HM. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules. 2012;17:9631-40. https://doi.org/10.3390/molecules17089631
  68. George OL, Radha RH, Somasekriah VB. In vitro anti-diabetic activity and GC-MS analysis of bioactive compounds present the methanol extract of Kalanchoe pinnata Indian J Chem. 2018;57: 1213-21.
  69. Olasehinde TA, Odjadjare EC, Mabinya LV, Olaniran AO, Okoh AI. Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of ?-amyloid fibrils. Electronic J Biotechnol. 2019;40:460-69. https://doi.org/10.1016/j.ejbt.2019.03.008
  70. Petruk G, Gifuni I, Illiano A, Roxo M, Pinto G, Amoresano A et al. Simultaneous production of antioxidants and starch from the microalga Chlorella sorokiniana. Algal Res. 2018;34:164-74. https://doi.org/10.1016/j.algal.2018.07.012
  71. Napolitano G, Fasciolo G, Salbitani G, Venditti P. Chlorella sorokiniana dietary supplementation increases antioxidant capacities and reduces ROS release in mitochondria of hyperthyroid rat liver. Antioxidants. 2020;9:883. https://doi.org/10.3390/antiox9090883
  72. Salbitani G, Vona V, Bottone C, Petriccione M, Carfagna S. Sulfur deprivation results in oxidative perturbation in Chlorella sorokiniana (211/8k). Plant and Cell Physiol. 2015;56: 897-905. https://doi.org/10.1093/pcp/pcv015

Downloads

Download data is not yet available.