Comparative Bacterial Metagenomics of Soursop (Annona muricata L.) and Apple (Malus domestica B.)
DOI:
https://doi.org/10.14719/pst.1749Keywords:
Annona muricata, Bacteria, Malus domestica, Metagenomics, Illumina next-generation sequencingAbstract
Illumina Next Generation Sequencing (NGS) platform targeting the conserved regions of bacteria ribosomal DNA (16s rRNA) was used to identify the bacterial community associated with soursop (Annona muricata L.). The aim of this work is to compare the diversities of the bacterial communities of Annona muricata and Malus domestica (obtained from National Centre for Biotechnology Information (NCBI) database). The functional genes in these communities were also predicted. A total of 167,693 high quality reads was obtained from Annona muricata and Malus domestica. Clustering on GREENGENES database revealed 570 Operational Taxonomic Units (OTUs). Alpha-diversity indices indicated high diversity and abundance of microbial community. Taxonomic analysis revealed that bacterial community was grouped into 24 phyla and 455 genera. The microbiome of the samples was dominated by distinct populations of four phyla viz Proteobacteria (58.41%), Bacteroidetes (18.59%), Actinobacteria (11.13%) and Firmicutes (7.29%). The functional genes were predicted for 16S rRNA gene sequences based on Kyoto Encyclopedia of Genes and Genomes (KEGG) which indicated amino acid metabolism, carbohydrate metabolism, xenobiotics biodegradation and lipid metabolism, metabolism of terpenoids and polypeptides and biosynthesis of other secondary metabolites as predominant metabolic categories. Thus, the study revealed the structure of microbial community and functional genes composition in A. muricata and M. domestica fruits and this will help to expand the knowledge concerning the structure of plant-associated bacterial communities, revealing valuable information of their impact and indicating their crucial roles in evolutionary and ecological processes.
Downloads
References
Moreira R, Moreno J, Buitrón J, Orbe K, Hector-Ardisana E, Uguna F, Viera W. Characterization of a soursop population (Annona muricata) from the central region of Ecuadorian Littoral using ISSR markers. Int J Plant Res. 2018;31(3):1-5. DOI:10.5958/2229-4473.2018.00067.8
Adeola, AA, Aworh OC. Development and sensory evaluation of an improved beverage from Nigeria?s tamarind (Tamarindus indica L.) fruit. African J Food Agric Nutr Dev. 2010;10(9):4079-92. DOI:10.4314/AJFAND.V10I9.62888
Ajayi AA, Peter-Albert CF, Adedeji OM. Modification of cell wall degrading enzymes from soursop (Annona muricata) fruit deterioration for improved commercial development of clarified soursop juice (A review). J Medicinal Aromat Plants. 2015;4(1):178. http://dx.doi.org/10.4172/2167-0412.1000178
International Society for Infectious Diseases. ProMEDmail; 2018. Available from: https://www.promedmail.org. Retrieved 8 May, 2019.
Friesen ML, Porter SS, Stark SC, Von Wettberg EJ, Sachs JL, Martinez-Romero E. Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst. 2011;42:23-46. https://doi.org/10.1146/annurev-ecolsys-102710-145039
Yang W, Chen J, Chen G, Wang S, FengFu F. The early diagnosis and fast detection of blast fungus, Magnaporthe grisea, in rice plant by using its chitinase as biochemical marker and a rice cDNA encoding mannose-binding lectin as recognition probe. Biosens. Bioelectron. 2013;41(1):820-26. DOI: 10.1016/j.bios.2012.10.032
Hawksworth DL, Rossman AY. Where are all the undescribed fungi? Phytopathology. 1997;87(9):888-91. https://doi.org/10.1094/PHYTO.1997.87.9.888
Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes AC. Unravelling the diversity of grapevine microbiome. PLoS One. 2014; 9(1):1-12. https://doi.org/10.1371/journal.pone.0085622
Handelsman J. Metagenomics and microbial communities. University of Wisconsin-Madison, Madison, Wisconsin, USA. Encyclopedia of Life Sciences, John Wiley & Sons, Ltd; 2007. doi: 10.1002/9780470015902.a0020367
Liu J, Abdelfattah A, Norelli J, Burchard E, Schena L, Droby S. Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-speci?c in?uence. Microbiome. 2018;6(18):1-11. https://doi.org/10.1186/s40168-018-0403-x
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):1-11. https://doi.org/10.1093/nar/gks808
Chen C, Khaleel SS, Huang H, Wu CH. Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med. 2014;9(8):1-11. https://doi.org/10.1186/1751-0473-9-8
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. J Bioinform. 2010;27(16):2194-200. https://doi.org/10.1093/bioinformatics/btr381
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Hank S, Wagner H. Vegan: Community Ecology Package. 2019. https://cran.r-project.org
Wassermann B, Müller H, Berg G. An Apple a Day: Which Bacteria Do We Eat With Organic and Conventional Apples? Front. Microbiol. 2019;10:1-13. https://doi.org/10.3389/fmicb.2019.01629
Langille MG, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RV, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol., 2013;31(9):814-21. DOI: 10.1038/nbt.2676
Eckert JW, Ogawa JM. The chemical control of postharvest diseases: subtropical and tropical fruits. Annu Rev Phytopathol. 1985;23(1) 421-54. https://doi.org/10.1146/annurev.py.23.090185.002225
Zhang L, Dai J, Tang Y, Luo X, Wang Y, An H, Fang C, Zhan C. Hymenobacter deserti sp. nov., iso- lated from the desert of Xinjiang, China. Int J Syst Evol Microbiol. 2009;59:77-82. DOI:10.1099/ijs.0.000265-0
Gupta A, Logan J, Elhag N, Almond M. Sphingobacterium spiritivorum infection in a patient with end stage renal disease on haemodialysis. Ann Clin Microbiol Antimicrob. 2018;15(1):25. https://doi.org/10.1186/s12941-016-0141-5
Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Evol Microbiol. 1976;26:226-29. DOI:10.1099/00207713-26-2-226
Tani A, Takai Y, Suzukawa I, Akita M, Murase H, Kimbara K. Practical application of methanol-mediated mutualistic symbiosis between Methylobacterium species and a roof greening moss, Racomitrium japonicum. PLoS ONE. 2012;7(3):1-9. https://doi.org/10.1371/journal.pone.0033800
Marizcurrena JJ, Herrera LM, Cost´abile A, Morales D, Villad´oniga C, Eizmendi A, Davyt D, Castro-Sowinski S. Validating biochemical features at the genome level in the Antarctic bacterium Hymenobacter sp. strain UV11. FEMS Microbiol. Lett. 2019;366(14):1-10. DOI:10.1093/femsle/fnz177
Yi H, Oh HM, Lee JH, Kim SJ, Chum J. Flavobacterium antarcticum sp. nov., a novel psychrotorerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol. 2005;55:637-47. DOI: 10.1099/ijs.0.63423-0
Madhaiyan M, Poonguzhal S, Lee J, Lee K, Sundaram S. Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int J Syst Evol Microbiol. 2010;60(Pt 9):2187-192. DOI:10.1099/ijs.0.014019-0
De Beer H, Hugo CJ, Joostw PJ, Willems A, Vancanneyt M, Coenye T, Vandamme PA. Chryseobacterium vrystaatense sp. nov. isolated from raw chicken in a chicken- processing plant. Int J Syst Evol Microbiol. 2005;55:2149-53. DOI: 10.1099/ijs.0.63746-0
Pozzo T, Higdon SM, Pattathil S, Hahn MG, Bennett AB. Characterization of novel glycosyl hydrolases discovered by cell wall glycan directed monoclonal antibody screening and metagenome analysis of maize aerial root mucilage. PLoS One. 2018;13(9):1-19. https://doi.org/10.1371/journal.pone.0204525
Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://doi.org/10.1186/s12967-017-1175-y
Naber CK. Staphylococcus aureus bacteremia: epidemiology, path- ophysiology and management strategies. Clinical Infectious Diseases. 2009;48(Suppl 4):S231–S237. DOI: 10.1086/598189
Argudin MA, Mendoza MC, Rodico MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2010;2(7):1751-73. doi: 10.3390/toxins2071751
Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H. Proposals of Sphingomonas paucimobilis gen. nov., comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., two geno species of the genus Sphingomonas. Microbiol. Immunol. 1990;34(2):99-119.DOI: 10.1111/j.1348-0421.1990.tb00996.x
Yu FB, Shan SD, Luo LP, Guan LB, Qin H. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Health. Part B Pesticides Food Contaminants and Agricultural Wastes. 2013;48(3):198-207.DOI: 10.1080/03601234.2013.730299
Ryan MP, Adley CC. Ralstonia spp.: emerging global opportunistic pathogens. Eur J Clin Microbiol Infect Dis. 2014;33(3):291-304. DOI: 10.1007/s10096-013-1975-9
Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251-75.DOI: 10.1111/j.1348-0421.1992.tb02129.x
Stopnisek N, Bodenhausen N, Frey B, Fierer N, Eberl L, Weisskopf L. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations. Environ Microbiol. 2014;16(6):1503-12. doi:10.1111/1462-2920.12211
Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem. 2007;18(7):427-42. DOI: 10.1016/j.jnutbio.2006.11.004
González VME. Chirimoya (Annona cherimola Miller), Frutal tropical y sub- tropical de valores promisorios. Cult Trop. 2013;34(3):52-63. ISSN digital: 1819-4087. http://www.redalyc.org/articulo.oa?id=193227533008
Bhardwaj R, Pareek S, Sagar NA, Vyas N. Bioactive compounds of Annona. In: Murthy HN, Bapat VA editors, Bioactive Compounds in Underutilized Fruits and Nuts; 2019. https://doi.org/10.1007/978-3-030-06120-3_5-1
Zhang Z, Mao C, Shi Z, Kou X. The amino acid metabolic and carbohydrate metabolic pathway play important roles during salt-stress response in tomato. Front Plant Sci. 2017;8:1231. https://doi.org/10.3389/fpls.2017.01231
Khedr AH, Abbas MA, Wahid AA, Quick WP, Abogadallah GM. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot. 2003;54(392):2553-62. DOI: 10.1093/jxb/erg277
Zushi K, Ono M, Matsuzoe N. Light intensity modulates antioxidant systems in salt-stressed tomato (Solanum lycopersicum L. cv. Micro-Tom) fruits. Hortic Sci. 2014;165:384-91. DOI:10.1016/j.scienta.2013.11.033
Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: e?ect on arginine metabolism and ROS accumulation. J Exp Bot. 2013;64(5):1367-79. DOI: 10.1093/jxb/ers400
França SC, Roberto PG, Marins MA, Puga RD, Rodrigues A, Pereira JO. Biosynthesis of secondary metabolites in sugarcane. Genet Mol Biol. 2001;24(1-4):243-50.DOI:10.1590/S1415-47572001000100032
Bergman ME, Davis B, Phillips MA. Medically useful plant terpenoids: biosynthesis, occurrence and mechanism of action. Molecules. 2019;24(21): 3961. DOI: 10.3390/molecules24213961
McCormick AC, Unsicker SB, Gershenzon J. The speci?city of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 2012;17(5):303-10. DOI: 10.1016/j.tplants.2012.03.012
Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3(7):408-14.DOI: 10.1038/nchembio.2007.5
Singh R. Biodegradation of xenobiotics- a way for environmental detoxification. Int J Dev Res. 2017;7(07):14082-87. http://www.journalijdr.com
Bhatt P, Gangola S, Chaudhary P, Khati P, Kumar G, Sharma A, Srivastava A. Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in indigenous Bacillus spp. Bioremediation J. 2019;23(1):42-52. DOI:10.1080/10889868.2019.1569586
Downloads
Published
Versions
- 01-10-2022 (2)
- 28-07-2022 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Ovieonisofien Moore, Anthony Ataga, Nkechi Ogbuji
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).