Endophytic microbes and their diverse beneficial aspects in various sectors: A critical insight

Authors

  • Debapriya Choudhury Applied and Molecular Mycology and Plant Pathology Laboratory, CAS Department of Botany, The University of Burdwan, Purba Bardhaman 713104, West Bengal https://orcid.org/0000-0002-7987-7360
  • Santanu Tarafdar Applied and Molecular Mycology and Plant Pathology Laboratory, CAS Department of Botany, The University of Burdwan, Purba Bardhaman 713104, West Bengal https://orcid.org/0000-0002-8238-1542
  • Nasrin Parvin Applied and Molecular Mycology and Plant Pathology Laboratory, CAS Department of Botany, The University of Burdwan, Purba Bardhaman 713104, West Bengal https://orcid.org/0000-0003-4987-0974
  • Rajarshi Rit Applied and Molecular Mycology and Plant Pathology Laboratory, CAS Department of Botany, The University of Burdwan, Purba Bardhaman 713104, West Bengal https://orcid.org/0000-0003-3122-5926
  • Sanchali Roy Applied and Molecular Mycology and Plant Pathology Laboratory, CAS Department of Botany, The University of Burdwan, Purba Bardhaman 713104, West Bengal https://orcid.org/0000-0003-0054-6022
  • Sudip kr. Sadhu Applied and Molecular Mycology and Plant Pathology Laboratory, CAS Department of Botany, The University of Burdwan, Purba Bardhaman 713104, West Bengal https://orcid.org/0000-0001-6246-4650
  • Sikha Dutta Applied and Molecular Mycology and Plant Pathology Laboratory, CAS Department of Botany, The University of Burdwan, Purba Bardhaman 713104, West Bengal https://orcid.org/0000-0002-4950-8820

DOI:

https://doi.org/10.14719/pst.1877

Keywords:

Endophytes, bioactive secondary metabolites, plant growth promoting microbes, sustainable agriculture, pharmaceuticals

Abstract

Endophytes are ubiquitous and grow in plant tissues without causing any harmful effects to the host. They include different groups of microorganisms such as bacteria, fungi and actinomycetes. Along with the host plants, the existing endophytes also co-evolve after a long relationship between them. Host plant-endophyte interaction is similar to that of plant growth promoting microbes as they induce the growth of the host plant and increase resilience against biotic and abiotic stresses. The interaction of plant endophytes at the molecular level and the effect of endophytes on host gene expression is a new field of study and are still rarely explored. Endophytes act as a promising resource of many invaluable bioactive secondary metabolites. Some of these bioactive compounds include alkaloids, polyphenols, sterols, xanthones, terpenoids, flavones, coumarins, polyketides, quinones, saponins, tannins, benzopyrones, dibenzofurans. These secondary metabolites are beneficial for agriculture, industrial and pharmacological purposes. As endophytes have beneficial effects in sustainable agriculture, plant disease management, pharmaceuticals, industry and environmental management in an eco-friendly way, thus improving the strategy of application of endophytes as biological agents in every aspect of our life is a very challenging field of research. Our aim in this present review is to focus on plant-endophyte interactions and their various dimensions in order to address some future possibilities for expediting the bioactive secondary metabolite production.

Downloads

Download data is not yet available.

References

Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in microbiology. 2016 Sep 29; 7:1538. https://dx.doi.org/10.3389%2Ffmicb.2016.01538

Hata K, Sone K. Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience. 2008 Aug 1; 49(4):229-32. https://doi.org/10.1007/S10267-008-0411-Y

Specian V, Sarragiotto MH, Pamphile JA, Clemente E. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Brazilian Journal of Microbiology. 2012 Sep; 43(3):1174-82. https://doi.org/10.1590/s1517-838220120003000045

St?pniewska Z, Ku?niar A. Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Applied Microbiology and Biotechnology. 2013 Nov; 97(22): 9589-96. https://doi.org/10.1007/s00253-013-5235-9

Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology advances. 2020 Mar 1; 39:107462. https://doi.org/10.1016/j.biotechadv.2019.107462

Verma H, Kumar D, Kumar V, Kumari M, Singh SK, Sharma VK et al. The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms. 2021 Aug 13; 9(8):1729. https://doi.org/10.3390/microorganisms9081729

Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW et al. Biodegradation of polyester polyurethane by endophytic fungi. Applied and environmental microbiology. 2011 Sep 1; 77(17):6076-84. https://doi.org/10.1128/AEM.00521-11.

Mukherjee A, Bhowmick S, Yadav S, Rashid MM, Chouhan GK, Vaishya JK, Verma JP. Re-vitalizing of endophytic microbes for soil health management and plant protection. 3Biotech. 2021 Sep; 11(9):1-7. https://doi.org/10.1007/s13205-021-02931-4

Pasrija P, Girdhar M, Kumar M, Arora S, Katyal A. Endophytes: an unexplored treasure to combat Multidrug resistance. Phytomedicine Plus. 2022 Feb 28; 2(2):100249. https://doi.org/10.1016/j.phyplu.2022.100249

Abd Rahman AN, Tett SE, Staatz CE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in patients with autoimmune disease. Clinical pharmacokinetics. 2013 May; 52(5):303-31. https://doi.org/10.1007/s40262-013-0039-8

Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, White JF. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology. 2021 Nov; 131(5):2161-77. https://doi.org/10.1111/jam.15111.

Xu J. Fungal DNA barcoding. Genome. 2016; 59(11):913-32. https://doi.org/10.1139/gen-2016-0046

Long HH, Schmidt DD, Baldwin IT. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One. 2008 Jul 16; 3(7):e2702. https://dx.doi.org/10.1371%2Fjournal.pone.0002702

Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany. 2014 Jan 1; 97:30-39. http://dx.doi.org/10.1016/j.envexpbot.2013.09.014

Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW. Enhanced maize productivity by inoculation with diazotrophic bacteria. Functional Plant Biology. 2001 Sep 3; 28(9):829-36. http://dx.doi.org/10.1071/PP01045

Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental pollution. 2008 Dec 1; 156(3):1164-70. https://doi.org/10.1016/j.envpol.2008.04.007

Rodriguez RJ, Henson J, van Volkenburgh E, Hoy M, Wright L, Beckwith F et al. Fungal endophytes: diversity and functional roles. New Phytol. 2009; 182:314-30. https://doi.org/10.1111/j.1469-8137.2009.02773.x.

Rashmi M, Kushveer JS, Sarma VV. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere. 2019 Nov 30; 10(1):798-1079. http://dx.doi.org/10.5943/mycosphere/10/1/19

Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology. 2001 Apr; 91(4):415-22. https://doi.org/10.1094/phyto.2001.91.4.415

Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology. 2005 Apr; 71(4):1685-93. https://doi.org/10.1128/aem.71.4.1685-1693.2005

Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, Ghazi IA et al. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research. 2022 Nov 1; 214:113821. https://doi.org/10.1016/j.envres.2022.113821

White JF, Kingsley KL, Verma SK, Kowalski KP. Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms. 2018 Sep; 6(3):95. https://doi.org/10.3390/microorganisms6030095.

White JF, Torres MS, Verma SK, Elmore MT, Kowalski KP, Kingsley KL. Evidence for widespread microbivory of endophytic bacteria in roots of vascular plants through oxidative degradation in root cell periplasmic spaces. In: Singh AK, Kumar A, Singh PK, editors. PGPR amelioration in sustainable agriculture. Woodhead; 2019 Jan 1. p. 167-93. https://doi.org/10.1016/B978-0-12-815879-1.00009-4

Bajaj R, Huang Y, Gebrechristos S, Mikolajczyk B, Brown H, Prasad R et al. Transcriptional responses of soybean roots to colonization with the root endophytic fungus Piriformospora indica reveals altered phenylpropanoid and secondary metabolism. Scientific Reports. 2018 Jul 6; 8(1):1-8. https://doi.org/10.1038/s41598-018-26809-3

Christian N, Herre EA, Clay K. Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytologist. 2019 May; 222(3):1573-83. https://doi.org/10.1111/nph.15693

Waqas M, Kim YH, Khan AL, Shahzad R, Asaf S, Hamayun M et al. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. Journal of Zhejiang University-Science B. 2017 Feb; 18(2):109-24.https://doi.org/10.1631/jzus.B1500262.

Yakti W, Kovács GM, Vági P, Franken P. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant Ecology and Diversity. 2018 Nov 2; 11(5-6):637-48. https://doi.org/10.1080/17550874.2019.1610912

Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in microbiology. 2017 Jun 2; 8:971. https://doi.org/10.3389/fmicb.2017.00971

Jog R, Pandya M, Nareshkumar G, Rajkumar S. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology. 2014 Apr 1; 160(4):778-88. https://doi.org/10.1099/mic.0.074146-0

Sharma A, Johri BN. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiological Research. 2003 Jan 1; 158(3):243-48. https://doi.org/10.1078/0944-5013-00197

Singh R, Dubey AK. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology. 2018 Aug 8; 9:1767.https://doi.org/10.3389/fmicb.2018.01767.

Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012; 28:1327–1350. https://doi.org/10.1007/s12045-016-0421-6

Gupta S, Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology. 2019 Jul 9; 10:1506. https://doi.org/10.3389/fmicb.2019.01506

Lamont BB. Structure, ecology and physiology of root clusters–a review. Plant and Soil. 2003 Jan; 248(1):1-9. https://doi.org/10.1023/A:1022314613217

Crush JR, Popay AJ, Waller J. Effect of different Neotyphodium endophytes on root distribution of a perennial ryegrass (Lolium perenne L.) cultivar. New Zealand Journal of Agricultural Research. 2004 Sep 1; 47(3):345-49. https://doi.org/10.1080/00288233.2004.9513603

Martinuz A, Zewdu G, Ludwig N, Grundler F, Sikora RA, Schouten A. The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. Planta. 2015 Apr; 241(4):1015-25. https://doi.org/10.1007/s00425-014-2237-5

Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B et al. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Molecular plant-microbe interactions. 2011 Apr; 24(4):421-31. https://doi.org/10.1094/MPMI-05-10-0110

Barka EA, Belarbi A, Hachet C, Nowak J, Audran JC. Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS microbiology letters. 2000 May 1; 186(1):91-95. https://doi.org/10.1111/j.1574-6968.2000.tb09087.x

Frommel MI, Nowak J, Lazarovits G. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiology. 1991 Jul; 96(3):928-36. https://doi.org/10.1104/pp.96.3.928

Hamayun M, Afzal Khan S, Ahmad N, Tang DS, Kang SM, Na CI et al. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World Journal of Microbiology and Biotechnology. 2009 Apr; 25(4):627-32.https//doi.org/10.1007/s11274-009-9982-9

Choudhary DK, Prakash A, Johri BN. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology. 2007 Dec; 47(4):289-97. https://doi.org/10.1007/s12088-007-0054-2

Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK. Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany. 2007 Nov 1; 58(14):3853-64. https://doi.org/10.1093/jxb/erm230

D'Alessandro MA, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC. Volatiles produced by soil?borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment. 2014 Apr; 37(4):813-26. https://dx.doi.org/10.1111%2Fpce.12220

Sheoran N, Nadakkakath AV, Munjal V, Kundu A, Subaharan K, Venugopal V et al. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological Research. 2015 Apr 1; 173:66-78. https://doi.org/10.1016/j.micres.2015.02.001

Arora NK, Kang SC, Maheshwari DK. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science. 2001 Sep 25:673-77. https://www.jstor.org/stable/24106362

Mercado-Blanco J, Rodr?guez-Jurado D, Hervás A, Jiménez-D?az RM. Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biological Control. 2004 Jun 1; 30(2):474-86. https://doi.org/10.1016/j.biocontrol.2004.02.002

Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Frontiers in Bioengineering and Biotechnology. 2020 May 15; 8:467. https://doi.org/10.3389/fbioe.2020.00467

Fracetto GG, Peres LE, Lambais MR. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development. Archives of Microbiology. 2017 Jul; 199(5):787-98. https://doi.org/10.1007/s00203-017-1354-5

Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N et al. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta. 2016 May; 243(5):1251-64. https://doi.org/10.1007/s00425-016-2482-x

Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B. Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. MBio. 2015 Oct 30; 6(5):e00621-15. https://dx.doi.org/10.1128%2FmBio.00621-15

De Zelicourt A, Al-Yousif M, Hirt H. Rhizosphere microbes as essential partners for plant stress tolerance. Molecular Plant. 2013 Mar 1; 6(2):242-45. http://doi.org/10.1093/mp/sst028

Madhaiyan M, Poonguzhali S, Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere. 2007 Sep 1; 69(2):220-28. https://doi.org/10.1016/j.chemosphere.2007.04.017

Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN. Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiology Ecology. 2006 Aug 1; 57(2):302-10. https://doi.org/10.1111/j.1574-6941.2006.00121.x

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany. 2012 Apr 24; 2012:1-26. https://doi.org/10.1155/2012/217037

Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms. 2017 Dec; 5(4):77. https://dx.doi.org/10.3390%2Fmicroorganisms5040077

Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology. 2010 Aug 15; 167(12):1009-17. https://doi.org/10.1016/j.jplph.2010.02.013

Newman MA, Sundelin T, Nielsen JT, Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science. 2013 May 16; 4:139. https://doi.org/10.3389/fpls.2013.00139

Sanchez-Vallet A, Mesters JR, Thomma BP. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews. 2015 Mar 1; 39(2):171-83. https://doi.org/10.1093/femsre/fuu003

Cord-Landwehr S, Melcher RL, Kolkenbrock S, Moerschbacher BM. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Scientific Reports. 2016 Nov 30; 6(1):1-1. https://dx.doi.org/10.1038%2Fsrep38018

Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiology Spectrum. 2016 Feb 26; 4(1):1-19. https://dx.doi.org/10.1128%2Fmicrobiolspec.VMBF-0012-2015

Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE. Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends in Plant Science. 2017 Nov 1; 22(11):939-48. http://dx.doi.org/10.1016/j.tplants.2017.08.005

Wu C, Han T, Lu H, Zhao B. The toxicology mechanism of endophytic fungus and swainsonine in locoweed. Environmental Toxicology and Pharmacology. 2016 Oct 1; 47:38-46. https://doi.org/10.1016/j.etap.2016.08.018

Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. 3Biotech. 2017 Oct; 7(5):1-4. https://dx.doi.org/10.1007%2Fs13205-017-0942-z

Maulidia V, Soesanto L, Syamsuddin S, Khairan K, Hamaguchi T, Hasegawa K, Sriwati R. Secondary metabolites produced by endophytic bacteria against the Root-Knot Nematode (Meloidogyne sp.). Biodiversitas Journal of Biological Diversity. 2020 Oct 20; 21(11): 5270-5. http://dx.doi.org/10.13057/biodiv/d211130

Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and nutritional antioxidants in human diseases. Frontiers in Physiology. 2018 May 17; 9:477. https://doi.org/10.3389/fphys.2018.00477

Ochoa CD, Wu RF, Terada LS. ROS signaling and ER stress in cardiovascular disease. Molecular Aspects of Medicine. 2018 Oct 1; 63:18-29. https://doi.org/10.1016/j.mam.2018.03.002

Harper JK, Arif AM, Ford EJ, Strobel GA, Porco Jr JA, Tomer DP et al. Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron. 2003 Mar 31; 59(14):2471-76. http://dx.doi.org/10.1016/S0040-4020(03)00255-2

Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM et al. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry. 2002 May 1; 60(2):179-83. http://dx.doi.org/10.1016/S0031-9422(02)00062-6

Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science. 1999 May 7; 284(5416):974-77. https://doi.org/10.1126/science.284.5416.974

Singh B, Kaur A. Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. Journal of Applied Microbiology. 2016 Feb; 120(2):301-11. https://doi.org/10.1111/jam.12998

Adeleke BS, Babalola OO. Pharmacological potential of fungal endophytes associated with medicinal plants: A review. Journal of Fungi. 2021 Feb; 7(2):147. https://doi.org/10.3390/jof7020147

Bashyal BP, Wellensiek BP, Ramakrishnan R, Faeth SH, Ahmad N, Gunatilaka AL. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorganic and Medicinal Chemistry. 2014 Nov 1; 22(21):6112-16.http://dx.doi.org/10.1016/j.bmc.2014.08.039

Ding L, Münch J, Goerls H, Maier A, Fiebig HH, Lin WH, Hertweck C. Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic & Medicinal Chemistry Letters. 2010 Nov 15; 20(22):6685-7. https://doi.org/10.1016/j.bmcl.2010.09.010

Wang P, Kong F, Wei J, Wang Y, Wang W, Hong K, Zhu W. Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Marine Drugs. 2014 Jan; 12(1):477-90. https://dx.doi.org/10.3390%2Fmd12010477

Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. Journal of Natural Products. 1995 Sep; 58(9):1315-24. https://doi.org/10.1021/np50123a002

Bashyal B, Li JY, Strobel G, Hess WM, Sidhu R. Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon. 1999. 72:33-42.

Strobel GA, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B. Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Australian Journal of Botany. 1997; 45(6):1073-82. https://doi.org/10.1071/BT96094

Almagro L, Fernández-Pérez F, Pedreño MA. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules. 2015 Feb; 20(2):2973-3000. https://dx.doi.org/10.3390%2Fmolecules20022973

Kumar A, Patil D, Rajamohanan PR, Ahmad A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PloS one. 2013 Sep 16; 8(9):e71805. https://doi.org/10.1371/journal.pone.0071805

Biswas D, Biswas P, Nandy S, Mukherjee A, Pandey DK, Dey A. Endophytes producing podophyllotoxin from Podophyllum sp. and other plants: A review on isolation, extraction and bottlenecks. South African Journal of Botany. 2020 Nov 1; 134:303-13. https://doi.org/10.1016/j.sajb.2020.02.038

Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. Journal of Biotechnology. 2006 Apr 20; 122(4):494-510. https://doi.org/10.1016/j.jbiotec.2005.10.015

Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. Journal of Natural Products. 2006 Aug 25; 69(8):1121-24. https://doi.org/10.1021/np060174f

Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P et al. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World Journal of Microbiology and Biotechnology. 2008 Jul; 24(7):1115-21. https://doi.org/10.1007/s11274-007-9582-5

Kusari S, Lamshöft M, Spiteller M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro?drug deoxypodophyllotoxin. Journal of Applied Microbiology. 2009 Sep; 107(3):1019-30. https://doi.org/10.1111/j.1365-2672.2009.04285.x

Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn. (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry. 2010 Jan 1; 71(1):117-22. https://doi.org/10.1016/j.phytochem.2009.09.030

Manganyi MC, Ateba CN. Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications. Microorganisms. 2020 Dec; 8(12):1934. https://doi.org/10.3390/microorganisms8121934

Huang FY, Mei WL, Li YN, Tan GH, Dai HF, Guo JL et al. The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. European Journal of Cancer. 2012 Sep 1;48(14):2260-69. https://doi.org/10.1016/j.ejca.2011.12.018

Trendowski M, Mitchell JM, Corsette CM, Acquafondata C, Fondy TP. Chemotherapy with cytochalasin congeners in vitro and in vivo against murine models. Investigational New Drugs. 2015 Apr; 33(2):290-99. https://dx.doi.org/10.1007%2Fs10637-014-0203-5

Song X, Tu R, Mei X, Wu S, Lan B, Zhang L, Luo X, Liu J, Luo M. A mycophenolic acid derivative from the fungus Penicillium sp. SCSIO sof101. Natural Product Research. 2020 May 2; 34(9):1206-12. https://doi.org/10.1080/14786419.2018.1553881

Kumar M, Saxena R, Tomar RS. Endophytic microorganisms: promising candidate as biofertilizer. In: Panpatte D, Jhala Y, Vyas R, Shelat H, editors. Microorganisms for green revolution. 6. Singapore: Springer; 2017. p. 77-85. https://doi.org/10.1007/978-981-10-6241-4_4)

Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH. Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology. 2017 Apr; 18(3):469-73. https://dx.doi.org/10.1111%2Fmpp.12483

Firáková S, Šturdíková M, Mú?ková M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia. 2007 Jun; 62(3):251-57. http://dx.doi.org/10.2478/s11756-007-0044-1

Maela MP, van der Walt H, Serepa-Dlamini MH. The antibacterial and anticancer activities and Bioactive constituents’ identification of Alectra sessiliflora bacterial endophytes. Frontiers in Microbiology. 2022 Jul 5; 13:870821. https://doi.org/10.3389/fmicb.2022.870821

Wu C, Wang W, Wang X, Shahid H, Yang Y, Wang Y et al. Diversity and communities of culturable endophytic fungi from the root holoparasite Balanophora polyandra Griff. and their antibacterial and antioxidant activities. Annals of Microbiology. 2022 May 24; 72(19):1-11. https://doi.org/10.1186/s13213-022-01676-6

Gupta J, Sharma S. Endophytic fungi: A new hope for drug discovery. In: Singh J, Gehlot P Editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2020 Jan 1. p. 39-49. https://doi.org/10.1016/B978-0-12-821006-2.00004-2

Maxwell T, Blair RG, Wang Y, Kettring AH, Moore SD, Rex M, Harper JK. A solvent-free approach for converting cellulose waste into volatile organic compounds with endophytic fungi. Journal of Fungi. 2018 Sep; 4(3):102. https://doi.org/10.3390/jof4030102

Strobel GA, Knighton WB, Kluck K, Ren Y, Livinghouse T, Griffin M et al. The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology. 2010; 156(2):3830-83. https://doi.org/10.1099/mic.0.2008/022186-0

Kang JW, Doty SL. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate. Canadian Journal of Microbiology. 2014; 60(7):487-90. https://doi.org/10.1139/cjm-2014-0095

Rashmi M, Venkateswara SV. Secondary metabolite production by endophytic fungi: the gene clusters, nature, and expression. In: Jha S, Editors. Endophytes and secondary metabolites. Cham: Springer; 2019. p. 475-90. https://doi.org/10.1007/978-3-319-90484-9_20

Published

19-11-2022 — Updated on 01-01-2023

Versions

How to Cite

1.
Choudhury D, Tarafdar S, Parvin N, Rit R, Roy S, kr. Sadhu S, Dutta S. Endophytic microbes and their diverse beneficial aspects in various sectors: A critical insight. Plant Sci. Today [Internet]. 2023 Jan. 1 [cited 2024 May 1];10(1):96-107. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1877

Issue

Section

Review Articles