Investigation on microfloral association in the roots of Macrotyloma uniflorum (Lam.) Verdc., a medicinally important tropical pulse-crop and their possible applications for crop improvement: a review
DOI:
https://doi.org/10.14719/pst.2307Keywords:
Antiurolithiatic property, Beneficial microflora, Macrotyloma uniflorum, Putative active constituentsAbstract
Macrotyloma uniflorum (Lam.) Verdc., an economically important medicinal plant belongs to the Leguminosae family. Being Afro-Asian origin, the plant has long tradition of uses. It is primarily used for its antiurolithiatic property although it has other medicinal uses. Being Leguminosae member, this plant can form rhizobial nodules and mycorrhizal associations. The rhizobia obtained from this plant are mostly belonged to Bradyrhizobium sp. Although, Rhizobium pusence has also been reported. Microbes as biofertilizers can be used to increase yield of this plant, as well as there is great potential for utilizing the microbes derived from this plant. In this review we aim to describe the plant M. uniflorum - its taxonomic characteristics, economic uses, putative active constituents, and beneficial microflora along with their applications.
Downloads
References
Sangeetha M, Gayathiri K, Sharanya VK, Shyam Prakash G, Gopi Sudheer kumar J, Vimalavathini R, Kavimani S. Phytoconstituents with antiurolithic activity -A review. International Journal of Biological and Pharmaceutical Research. 2015;6(12):1001-07.
Soundararajan P, Mahesh R, Ramesh T, Begum VH. Effect of Aerva lanata on calcium oxalate urolithiasis in rats. 2006 Dec;44(12):981-86.
Atodariya U, Barad R, Upadhyay S, Upadhyay U. Anti-urolithiatic activity of Dolichos biflorus seeds. Journal of Pharmacognosy and Phytochemistry. 2013 Jul 1;2(2):209-13.
Brink M, Belay G, De Wet JM. Plant Resources of Tropical Africa 1: Cereals and Pulses. Wageningen, The Netherlands: PROTA Foundation; 2006.
Saha S, Verma RJ. Antinephrolithiatic and antioxidative efficacy of Dolichos biflorus seeds in a lithiasic rat model. Pharmaceutical Biology. 2015 Jan 2;53(1):16-30. https://doi.org/10.3109/13880209.2014.909501
Prasad SK, Singh MK. Horse gram-an underutilized nutraceutical pulse crop: a review. Journal of Food Science and Technology. 2015 May;52(5):2489-99. https://doi.org/10.1007%2Fs13197-014-1312-z
Kachru A, Bisht M, Baunthiyal M. In vitro evaluation of anti-neprolithiatic activity of leaves and seeds of Macrotyloma uniflorum on dissolution or removal of kidney stones. Res J Pharmacognosy and Phytochem. 2016 Mar 28;8(1):05-12. https://doi.org/10.5958/0975-4385.2016.00002.9
Ahmed S, Hasan MM, Mahmood ZA. Macrotyloma uniflorum (Lam.) Verdc. (Papilionaceae): A review of medicinal uses, phytochemistry and pharmacology. World Journal of Pharmacy and Pharmaceutical Sciences. 2016;5(2):51-62.
Ahmed S, Hasan MM, Mahmood ZA. Macrotyloma uniflorum (Lam.) Verdc, Phaseolus lunatus Linn, Phaseolus vulgaris Linn. seeds: Nature’s potential candidates against urolithiasis by virtue of multidimensional pharmacology. World Journal of Pharmacy and Pharmaceutical Sciences. 2016 Jun 12;5(8):289-300. https://doi.org/10.7897/2277-4572.0516
Rlds R, Erhss E. Medicinal and nutritional values of Macrotyloma uniflorum (Lam.) verdc (kulattha): A conceptual study. Global Journal of Pharmacy and Pharmaceutical Sciences. 2017;1(2):44-53. http://dx.doi.org/10.19080/GJPPS.2016.01.555559
Yadav RL, Yadav DV, Duttamajumder SK. Rhizospheric environment and crop productivity: A review. Indian Journal of Agronomy. 2008 Mar 1;53(1):1-17.
Murphy C, Fuller DQ. Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Scientific Reports. 2017 Jul 14;7(1):1-9. https://doi.org/10.1038/s41598-017-05244-w
Rit R, https://commons.wikimedia.org/wiki/File:Macrotyloma_Uniflorum_flower_TS.jpg, distributed under a CC BY 4.0 license.
Rit R, https://commons.wikimedia.org/wiki/File:Macrotyloma_uniflorum_dissected_flower-_Androecium_01.jpg , distributed under a CC BY 4.0 license.
Rit R, https://commons.wikimedia.org/wiki/File:Macrotyloma_Uniflorum_androecium_02.jpg , distributed under a CC BY 4.0 license.
Verdcourt B. A new genus of Leguminosae-Phaseoleae. Kew Bulletin. 1970 Jan 1;24(2):322. https://doi.org/10.2307/4103055
Verdcourt B. Studies in the Leguminosae-Papilionoïdeae for the 'Flora of tropical East Africa': III. Kew Bulletin. 1970 Jan 1;379-447. https://doi.org/10.2307/4102845
Shobhana MC, Kulkarni M. Kulatha: therapeutic approach- acomprehensive review. International Journal of Ayurveda and Pharma Research. April 2017;5(4):89-93.
Sreerama YN, Neelam DA, Sashikala VB, Pratape VM. Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: seed coat phenolics and their distinct modes of enzyme inhibition. Journal of Agricultural and Food Chemistry. 2010 Apr 14;58(7):4322-30. https://doi.org/10.1021/jf903101k
Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Research International. 2021 Apr 1;142:110193. https://doi.org/10.1016/j.foodres.2021.110193
Wu SE, Hashimoto-Hill S, Woo V, Eshleman EM, Whitt J, Engleman L, Karns R, Denson LA, Haslam DB, Alenghat T. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature. 2020 Oct;586(7827):108-12. https://doi.org/10.1038/s41586-020-2604-2
Okazaki Y, Sekita A, Katayama T. Intake of phytic acid and myo-inositol lowers hepatic lipogenic gene expression and modulates gut microbiota in rats fed a high-sucrose diet. Biomedical Reports. 2018 May 1;8(5):466-74. https://doi.org/10.3892/br.2018.1079
Curhan GC, Willett WC, Knight EL, Stampfer MJ. Dietary factors and the risk of incident kidney stones in younger women: Nurses' Health Study II. Archives of internal medicine. 2004 Apr 26;164(8):885-91. 10.1001/archinte.164.8.885. https://doi.org/10.1001/archinte.164.8.885
Grases F, Prieto RM, Gomila I, Sanchis P, Costa-Bauzá A. Phytotherapy and renal stones: the role of antioxidants. A pilot study in Wistar rats. Urological research. 2009 Feb;37(1):35-40. https://doi.org/10.1007/s00240-008-0165-1
Grases F, Simonet BM, Vucenik I, Prieto RM, Costa ? Bauzá A, March JG, Shamsuddin AM. Absorption and excretion of orally administered inositol hexaphosphate (IP6 or phytate) in humans. Biofactors. 2001;15(1):53-61. https://doi.org/10.1002/biof.5520150105
Grases F, Prieto RM, Simonet BM, March JG. Phytate prevents tissue calcifications in female rats. Biofactors. 2000;11(3):171-77. https://doi.org/10.1002/biof.5520110303
Patel VB, Acharya N. Effect of Macrotyloma uniflorum in ethylene glycol induced urolithiasis in rats. Heliyon. 2020 Jun 1;6(6):e04253. https://doi.org/10.1016/j.heliyon.2020.e04253
Grases F, Rodriguez A, Costa-Bauza A. Efficacy of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors in urine. The Journal of Urology. 2015 Sep 1;194(3):812-19.https://doi.org/10.1016/j.juro.2015.03.099
Moore D. David Moore’s World of Fungi: where mycology starts; 2016. http://www.davidmoore.org.uk/assets/mostly_mycology/diane_howarth/am.htm
Trappe JM. AB Frank Mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza. 2005 Jun;15(4):277-81. https://doi.org/10.1007/s00572-004-0330-5
Hopkins WG, Hüner Norman PA, editors. Introduction to Plant Physiology. 4th ed. Wiley; 2009.
Strullu-Derrien C, Strullu DG. Mycorrhization of fossil and living plants. Comptes Rendus Palevol. 2007 Nov 1;6(6-7):483-94. https://doi.org/10.1016/j.crpv.2007.09.006
Krings M, Harper CJ, Taylor EL. Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philosophical Transactions of the Royal Society B: Biological Sciences. 2018 Feb 5;373(1739):20160500.http://doi.org/10.1098/rstb.2016.0500
Strullu?Derrien C, Selosse MA, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist. 2018 Dec;220(4):1012-30. https://doi.org/10.1111/nph.15076
Lalica MA, Tomescu AM. The early fossil record of glomeromycete fungi: New data on spores associated with early tracheophytes in the Lower Devonian (Emsian; c. 400 Ma) of Gaspé (Quebec, Canada). Review of Palaeobotany and Palynology. 2022 Mar 1;298:104590.https://doi.org/10.1016/j.revpalbo.2021.104590
Johnson NC, Gehring CA. Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon ZG, Whitbeck JL, editors. The rhizosphere. Academic Press. 2007 Jan 1; pp. 73-100. Academic Press. https://doi.org/10.1016/B978-012088775-0/50006-9
Taylor TN, Hass H, Kerp H. The oldest fossil ascomycetes. Nature. 1999 Jun; 399(6737):648. https://doi.org/10.1038/21349
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biology Reviews. 2020 Dec 1;34(4):151-69. https://doi.org/10.1016/j.fbr.2020.07.002
Smith MR. Cord-forming Palaeozoic fungi in terrestrial assemblages. Botanical Journal of the Linnean Society. 2016 Apr 1;180(4):452-60. https://doi.org/10.1111/boj.12389
Auxier B, Bazzicalupo A, Betz E, Dee JM, Le Renard L, Roushdy MM, Schwartz C, Berbee M. No place among the living: phylogenetic considerations place the Palaeozoic fossil T. protuberans in Fungi but not in Dikarya. A comment on M. Smith (2016). Botanical Journal of the Linnean Society. 2016 Dec 1;182(4):723-28. https://doi.org/10.1111/boj.12479
Halbwachs H, Harper CJ, Krings M. Fossil Ascomycota and Basidiomycota, With Notes on Fossil Lichens and Nematophytes. Journal: Encyclopedia of Mycology. 2021 Jan 1;378-95.https://doi.org/10.1016/B978-0-12-819990-9.00048-2
Moore D, Robson GD, Trinci AP. 21st century guidebook to fungi. Cambridge University Press; 2020 May 8. https://doi.org/10.1017/9781108776387
Li XL, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil. 1991 Sep;136(1):41-48. https://doi.org/10.1007/BF02465218
Cameron DD, Neal AL, van Wees SC, Ton J. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science. 2013 Oct 1;18(10):539-45. https://doi.org/10.1016/j.tplants.2013.06.004
Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, Pan J, Liu Y, Feng H. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences. 2019 Aug 27;20(17):4199. https://doi.org/10.3390/ijms20174199
Dastogeer KM, Zahan MI, Tahjib-Ul-Arif M, Akter MA, Okazaki S. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: a meta-analysis. Frontiers in Plant Science. 2020;1927. https://doi.org/10.3389/fpls.2020.588550
Chu XT, Fu JJ, Sun YF, Xu YM, Miao YJ, Xu YF, Hu TM. Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. South African Journal of Botany. 2016 May 1;104:21-29. https://doi.org/10.1016/j.sajb.2015.10.001
Ma J, Janoušková M, Li Y, Yu X, Yan Y, Zou Z, He C. Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Functional Plant Biology. 2015 Nov 4;42(12):1158-67. https://doi.org/10.1071/FP15106
Ma J, Sun C, Bai L, Dong R, Yan Y, Yu X et al. Transcriptome analysis of cucumber roots reveals key cold-resistance genes induced by AM fungi. Plant Molecular Biology Reporter. 2018 Feb;36(1):135-48. https://doi.org/10.1007/s11105-018-1066-2
Zhu X, Song F, Liu F. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants. In: Wu QS, editors. Arbuscular mycorrhizas and stress tolerance of plants. Singapore: Springer. 2017 Apr 8; p. 163-94. https://doi.org/10.1007/978-981-10-4115-0_8
Mathur S, Jajoo A. Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity. Industrial Crops and Products. 2020 Jan 1;143:111934. https://doi.org/10.1016/j.indcrop.2019.111934
Tuheteru FD, Wu QS. Arbuscular mycorrhizal fungi and tolerance of waterlogging stress in plants. In: Wu QS, editors. Arbuscular Mycorrhizas and stress tolerance of plants. Singapore: Springer. 2017; p. 43-66. https://doi.org/10.1007/978-981-10-4115-0_3
Adeyemi NO, Atayese MO, Sakariyawo OS, Azeez JO, Sobowale SP, Olubode A, Mudathir R, Adebayo R, Adeoye S. Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere. 2021 Jun 1;18:100325. https://doi.org/10.1016/j.rhisph.2021.100325
Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Frontiers in Plant Science. 2016 Oct 21;7:1574. https://doi.org/10.3389/fpls.2016.01574
Wu QS, Zou YN, Abd-Allah EF. Mycorrhizal association and ROS in plants. In: Ahmad P, editors. Oxidative damage to plants. Academic press. 2014 Jan 1; p. 453-75. https://doi.org/10.1016/B978-0-12-799963-0.00015-0
Bohra S, Singh J, Mathur N, Vyas A. Increased nutrient uptake and productivity of Dolichos biflorus by mycorrhizal fungi. J Arid Legumes. 2005;2:187-89.
Patanaik R, Sahu S, Padhi GS, Mishra AK. Effect of inoculation of vesicular arbuscular mycorrhiza on horsegram (Macrotyloma uniflorum) grown in soil in iron mine area. Indian Journal of Agricultural Sciences (India). 1995;65(3):186-90.
Savitha MM, Anitha P, Sumalatha BS, Tejavathi DH. Effect of mycorrhizal association on nodule number, mass, leghaemoglobin and free proline content in Macrotyloma uniflorum (Lam.) Verdc. under PEG induced water stress. International Journal of Current Microbiology and Applied Sciences. 2016;5(4):165-74. http://dx.doi.org/10.20546/ijcmas.2016.504.021
Maiti D, Toppo NN, Variar M. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.). Mycorrhiza. 2011 Nov; 21(8):659-67. https://doi.org/10.1007/s00572-011-0376-0
Rit R. https://commons.wikimedia.org/wiki/File:Vesicular_Arbuscular_Mycorrhizae_40X0031_01.jpg, distributed under a CC BY 4.0 License.
Rit R. https://commons.wikimedia.org/wiki/File:Vesicular_Arbuscular_Mycorrhizae_40X0031_03.jpg, distributed with a CC BY 4.0 License
Rit R. https://commons.wikimedia.org/wiki/File:Vesicular_Arbuscular_Mycorrhizae_40X0031_07.jpg, distributed with a CC BY 4.0 License
Rit https://commons.wikimedia.org/wiki/File:Vesicular_Arbuscular_Mycorrhizae_40X0031_04.jpg, distributed with a CC BY 4.0 license
Maheshwari DK, Agarwal M, Dheeman S, Saraf M. Potential of rhizobia in productivity enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. cultivated in the Western Himalaya. In: Maheshwari D, Saraf M, Aeron A, editors. Bacteria in Agrobiology: Crop Productivity. Berlin, Heidelberg: Springer. 2013 May; p. 127-65. https://doi.org/10.1007/978-3-642-37241-4_6
Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biology. 2006 Feb;7(4):1-20. https://doi.org/10.1186/gb-2006-7-4-r34
Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiology Ecology. 2008 Mar 1;63(3):383-400. https://doi.org/10.1111/j.1574-6941.2007.00424.x
Mehboob I, Naveed M, Zahir ZA. Rhizobial association with non-legumes: mechanisms and applications. Critical Reviews in Plant Science. 2009 Nov 4;28(6):432-56. https://doi.org/10.1080/07352680903187753
Ochieno DM, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-linked nutritional and phytochemical changes under multitrophic functional contexts in Sustainable Food Systems. Frontiers in Sustainable Food Systems. 2021 Jan 11;4:604396. https://doi.org/10.3389/fsufs.2020.604396
Dupin SE, Geurts R, Kiers ET. The non-legume Parasponia andersonii mediates the fitness of nitrogen-fixing rhizobial symbionts under high nitrogen conditions. Frontiers in Plant Science. 2020 Feb 7;10:1779. https://doi.org/10.3389/fpls.2019.01779
Cocking EC, Kothari SL, Batchelor CA, Jain S, Webster G, Jones J et al. Interaction of rhizobia with non-legume crops for symbiotic nitrogen fixation nodulation. In: Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy, MA. Azospirillum VI and related microorganisms Berlin, Heidelberg: Springer. 1995; p. 197-205. https://doi.org/10.1007/978-3-642-79906-8_20
Muranaka T, Saito K. Production of pharmaceuticals by plant tissue cultures. Comprehensive natural products II: Chemistry and Biology. 2010;3:615-28. http://dx.doi.org/10.1016/B978-008045382-8.00065-4
Christie PJ. Agrobacterium and plant cell transformation. The Desk Encyclopedia of Microbiology. 2003 Dec 11;10. https://doi.org/10.1016/B978-012373944-5.00115-2
Appunu C, Ganesan G, Kalita M, Kaushik R, Saranya B, Prabavathy VR, Sudha N. Phylogenetic diversity of rhizobia associated with Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) grown in South India based on glnII, recA and 16S-23S intergenic sequence analyses. Current microbiology. 2011 Apr;62(4):1230-38. https://doi.org/10.1007/s00284-010-9823-y
Arun AB, Sridhar KR. Symbiotic performance of fast-growing rhizobia isolated from the coastal sand dune legumes of west coast of India. Biology and Fertility of Soils. 2004 Dec;40:435-39. https://doi.org/10.1007/s00374-004-0800-0
Dhali S, Pradhan M, Sahoo RK, Mohanty S, Pradhan C. Alleviating Cr (VI) stress in horse gram (Macrotyloma uniflorum var. Madhu) by native Cr-tolerant nodule endophytes isolated from contaminated site of Sukinda. Environmental Science and Pollution Research. 2021 Jun;28(24):31717-30. https://doi.org/10.1007/s11356-021-13009-2
Edulamudi P, Antony Masilamani AJ, Vanga UR, Divi VR, Konada VM. Nickel tolerance and biosorption potential of rhizobia associated with horse gram (Macrotyloma uniflorum (Lam.) Verdc.). International Journal of Phytoremediation. 2021 Sep 19;23(11):1184-90. https://doi.org/10.1080/15226514.2021.1884182
Paikara B, Paliwal AK, Singh RN, Gupta DK. Response of rhizobium strains on horse gram (Dolichos biflorus L.) in northern hill region of Chhattisgarh.
Edulamudi P, Masilamani AJ, Divi VR, Konada VM. Production bacteriosin by rhizobia obtained from root nodules of Macrotyloma uniflorum (Lam.) Verdc. (Horse gram). Bangladesh Journal of Microbiology. 2011;28(2):76-79. https://doi.org/10.3329/bjm.v28i2.11820
Edulamudi P, Vanga UR, Konada VM. Iron effect on symbiotic efficiency of horse gram. Acta fytotechnica et zootechnica:: ISSN 1336-9245. 2022 Mar 31;25(1): https://doi.org/10.15414/afz.2022.25.01.54-59
Edulamudi P, Vanga UM, Konada VM. Lithium stress tolerance of horse gram [Macrotyloma uniflorum (Lam.) Verdc.] plants in association with rhizobia. Thai Journal of Agricultural Science. 2022 Oct 31;55(1):65-72.
Prabhavati E, Masilamani AJ, Divi VR, Vishnuvardhan Z, Vanga UR, Konad VM. Symbiotic efficiency, biosorption and the growth of rhizobia on Horse gram plants under aluminium stress. Acta Biologica Slovenica. 2019;62(1):77-86.
Avis TJ, Gravel V, Antoun H, Tweddell RJ. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry. 2008 Jul 1;40(7):1733-40. https://doi.org/10.1016/j.soilbio.2008.02.013
Schlaeppi K, Bulgarelli D. The plant microbiome at work. Molecular Plant-Microbe Interactions. 2015 Mar;28(3):212-27. https://doi.org/10.1094/MPMI-10-14-0334-FI
Bent E. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E, editors. Multigenic and induced systemic resistance in plants. Springer: Boston, MA. 2006; p. 225-58. https://doi.org/10.1007/0-387-23266-4_10
del Carmen Orozco-Mosqueda M, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research. 2020 May 1;235:126439. https://doi.org/10.1016/j.micres.2020.126439
Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012 Oct 11;2012. https://doi.org/10.6064/2012/963401
Choudhury D, Tarafdar S, Dutta S. Plant growth promoting rhizobacteria (PGPR) and their eco-friendly strategies for plant growth regulation: A review. Plant Science Today. 2022;9(3):524-37. https://doi.org/10.14719/ pst.1604
Varma A, Bakshi M, Lou B, Hartmann A, Oelmüller R. Functions of a novel plant growth-promoting mycorrhizal fungus: Piriformospora indica. Agric Res. 2012;1(2):117-31. https://doi.org/10.1007/s40003-012-0019-5
Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR. Plant growth-promoting bacterial endophytes. Microbiological Research. 2016 Feb 1;183:92-99. https://doi.org/10.1016/j.micres.2015.11.008
Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 2003 Aug; 255(2):571-86. https://doi.org/10.1023/A:1026037216893
Kloepper JW. Plant growth-promoting rhizobacteria (other systems). In: Okon Y, editors. Azospirillum/Plant Associations. Boca Raton, FL, USA: CRC Press. 1994;p. 111-18.
Kloeppe JW, Rodriguez-Kabana R, Zehnder AW, Murphy JF, Sikora E, Fernandez C. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology. 1999 Mar;28(1):21-26. https://doi.org/10.1071/AP99003
Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC. Phosphate solubilizing bacteria from subtropical soil and their trical-cium phosphate solubilizing abilities. Applied Soil Ecology. 2006 Nov 1;34(1):33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
Khatri D, Durgapal A, Gupta SM. Biochemical and molecular characterization of phosphate solubilizing bacteria from the rhizosphere of horse gram (Macrotyloma uniflorum (Lam.) Verdc.). Bochem Cell Archives. 2012;12:303-06.
Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews. 2015 Sep 1;79(3):293-320. https://doi.org/10.1128/MMBR.00050-14
Schulz B, Boyle C. What are endophytes?. In: Schulz BJE, Boyle CJC, Sieber TN, editors. Microbial root endophytes. Berlin, Heidelberg: Springer. 2006; p. 1-13. https://doi.org/10.1007/3-540-33526-9_1
Alam B, L? J, G? Q, Khan MA, G?ng J, Mehmood S et al. Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa?. Frontiers in Plant Science. 2021:3060. https://doi.org/10.3389/fpls.2021.791033
Thomas P, Swarna GK, Patil P, Rawal RD. Ubiquitous presence of normally non-culturable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures. Plant Cell, Tissue and Organ Culture. 2008 Apr;93(1):39-54. https://doi.org/10.1007/s11240-008-9340-x
Thomas P. Intense association of non-culturable endophytic bacteria with antibiotic-cleansed in vitro watermelon and their activation in degenerating cultures. Plant Cell Reports. 2011 Dec;30(12):2313-25. https://doi.org/10.1007/s00299-011-1158-z
Müller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiology Ecology. 2014 Jan 1;87(1):2-17. https://doi.org/10.1111/1574-6941.12198
Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here?. Environmental Microbiology. 2020 Jun;22(6):2107-23. https://doi.org/10.1111/1462-2920.14968
Fang K, Miao YF, Chen L, Zhou J, Yang ZP, Dong XF, Zhang HB. Tissue-specific and geographical variation in endophytic fungi of Ageratina adenophora and fungal associations with the environment. Frontiers in microbiology. 2019 Dec 18;10:2919. https://doi.org/10.3389/fmicb.2019.02919
Ramírez-Camejo LA. Diversity of culturable endophytic fungi vary through time in Manihot esculenta Crantz. Brazilian Journal of Biology. 2022 Jan 5;84. https://doi.org/10.1590/1519-6984.253156
Göre ME, Bucak C. Geographical and seasonal influences on the distribution of fungal endophytes in Laurus nobilis. Forest Pathology. 2007 Aug;37(4):281-88. http://dx.doi.org/10.1111/j.1439-0329.2007.00509.x
Rodriguez RJ, White Jr JF, Arnold AE, Redman AR. Fungal endophytes: diversity and functional roles. New Phytologist. 2009 Apr;182(2):314-30. https://doi.org/10.1111/j.1469-8137.2009.02773.x
Thomas P, Sekhar AC. Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB Plants. 2014 Jan 1;6 (plu002):1-12. https://doi.org/10.1093/aobpla/plu002
Wang Y, Dai CC. Endophytes: a potential resource for biosynthesis, biotransformation and biodegradation. Annals of Microbiology. 2011 Jun;61(2):207-15. https://doi.org/10.1007/s13213-010-0120-6
Salazar-Cerezo S, Martinez-Montiel N, Cruz-Lopez MD, Martinez-Contreras RD. Fungal diversity and community composition of culturable fungi in Stanhopea trigrina cast gibberellin producers. Frontiers in Microbiology. 2018 Apr 4;9:612. https://doi.org/10.3389/fmicb.2018.00612
Newman DJ, Cragg GM. Endophytic and epiphytic microbes as “sources” of bioactive agents. Frontiers in Chemistry. 2015 May 22;3:34. https://doi.org/10.3389/fchem.2015.00034
Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Natural Product Reports. 2006;23(5):753-71. https://doi.org/10.1039/B609472B
Pappas ML, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas GD, Papadopoulou KK. The beneficial endophytic fungus Fusarium solani strain K alters tomato responses against spider mites to the benefit of the plant. Frontiers in Plant Science. 2018 Nov 6;9:1603. https://doi.org/10.3389/fpls.2018.01603
Carella P, Schornack S. Manipulation of bryophyte hosts by pathogenic and symbiotic microbes. Plant and Cell Physiology. 2018 Apr 1;59(4):656-65. https://doi.org/10.1093/pcp/pcx182
Krings M, Taylor TN, Dotzler N. Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. Biocomplexity of Plant-Fungal Interactions. 2012 Feb 17;5-28. https://doi.org/10.1002/9781118314364.fmatter
Saikkonen K, Wäli P, Helander M, Faeth SH. Evolution of endophyte–plant symbioses. Trends in Plant Science. 2004 Jun 1;9(6):275-80. https://doi.org/10.1016/j.tplants.2004.04.005
Dhali S, Acharya S, Pradhan M, Patra DK, Pradhan C. Synergistic effect of Bacillus and Rhizobium on cytological and photosynthetic performance of Macrotyloma uniflorum (Lam.) Verdc. Grown in Cr (VI) contaminated soil. Plant Physiology and Biochemistry. 2022 Nov 1;190:62-69. https://doi.org/10.1016/j.plaphy.2022.08.027
Downloads
Published
Versions
- 01-07-2023 (2)
- 24-06-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Rajarshi Rit, Debapriya Choudhury, Chandrama Mukherjee, Sikha Dutta
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).