Drought stress tolerance in rice: a critical insight
DOI:
https://doi.org/10.14719/pst.2613Keywords:
Drought, rice, multi-omics, microbial interactions, adaptation mechanisms, mitigate drought stressAbstract
Drought is currently a serious threat for farming especially in rice cultivation, due to its substantial water requirements throughout its lifecycle. Drought is one of the major environmental constraints disrupting the growth and yield of rice plants, affecting them at physiological, morphological, biochemical and molecular levels. Global climate change exacerbates this issue, leading to substantial economic losses. As rice is a major food crop worldwide, the demand for rice production is increasing in tandem with the expanding human population. Consequently, it has become imperative to utilize drought-prone areas for agriculture and develop drought-tolerant rice genotypes. In addition to conventional breeding methods, the application of multi-omics approaches proves most effective in meeting the need to enhance drought tolerance in rice plants. Protective mechanisms, such as morphological adaptation, physiological acclimatization, cellular adjustments and antioxidant defense, play pivotal roles in helping plants overcome drought stress. Plant-microbial interactions are important for plants to overcome drought-induced adversities. Furthermore, applications of conventional approaches, omics approaches and nanotechnology are very promising for generating climate smart agriculture. Our aim in this review is to focus on drought stress tolerance in rice including drought-tolerant rice genotypes, their adaptation mechanisms, the unveiling the genes, transcription factors, microRNAs (miRNA) involved, microbial assistance and exploring approaches to mitigate drought stress in rice plants. The present review might throw some light on understanding the mechanism of drought stress tolerance in rice, including its molecular crosstalk and biochemical dynamics, for future researchers.
Downloads
References
Costello C, Cao L, Gelcich S, Cisneros-Mata MÁ, Free CM, Froehlich HE, Golden CD, Ishimura G, Maier J, Macadam-Somer I, Mangin T. The future of food from the sea. Nature. 2020 Dec 3;588(7836):95-100. https://doi.org/10.1038/s41586-020-2616-y
Martos V, Ahmad A, Cartujo P, Ordoñez J. Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences. 2021 Jun 25;11(13):5911. https://doi.org/10.3390/app11135911
Van Bavel J. The world population explosion: causes, backgrounds and projections for the future. Facts, Views & Vision in ObGyn. 2013;5(4):281.
Ortega-Gaucin D, Ceballos-Tavares JA, Ordoñez Sánchez A, Castellano-Bahena HV. Agricultural drought risk assessment: A spatial analysis of hazard, exposure and vulnerability in Zacatecas, Mexico. Water. 2021 May 20;13(10):1431. https://doi.org/10.3390/w13101431
Giorgos K. Droughts. Annu Rev Environ Resour. 2008;33(1):85-118. https://doi.org/10.1146/annurev.environ.33.081307.123117
Manickavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Chandra Babu R. Drought tolerance in rice: Morphological and molecular genetic consideration. Plant Growth Regulation. 2006 Nov;50:121-38. https://doi.org/10.1007/s10725-006-9109-3.
Uddin MN, Hossain MA, Burritt DJ. Salinity and drought stress: Similarities and differences in oxidative responses and cellular redox regulation. Water Stress and Crop Plants: A Sustainable Approach. 2016 Jul 22;1:86-101. https://doi.org/10.1002/9781119054450.ch7
Iqbal H, Yaning C, Waqas M, Shareef M, Raza ST. Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. Ecotoxicology and Environmental Safety. 2018 Nov 30;164:344-54. https://doi.org/10.1016/j.ecoenv.2018.08.004
Lisar SY, Motafakkerazad R, Hossain MM, Rahman IM. Causes, effects and responses. Water Stress. 2012 Jan 25;25(1):33. https://doi.org/10.5772/39363
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021 Jan 28;10(2):259. https://doi.org/10.3390/plants10020259
Kumar M, Kumar Patel M, Kumar N, Bajpai AB, Siddique KH. Metabolomics and molecular approaches reveal drought stress tolerance in plants. International Journal of Molecular Sciences. 2021 Aug 24;22(17):9108. https://doi.org/10.3390/ijms22179108
Panda D, Mishra SS, Behera PK. Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Science. 2021 Mar 1;28(2):119-32. https://doi.org/10.1016/j.rsci.2021.01.002
Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S, Singh N, Prasad KS, Kondayya K, Rao PR, Rani MG. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science. 2016 Jan 1;242:278-87. https://doi.org/10.1016/j.plantsci.2015.08.008
Kim Y, Chung YS, Lee E, Tripathi P, Heo S, Kim KH. Root response to drought stress in rice (Oryza sativa L.). International Journal of Molecular Sciences. 2020 Feb 22;21(4):1513. https://doi.org/10.3390/ijms21041513
Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KH, Zhuang W, Varshney RK. Developing drought smart, ready to grow future crops. The Plant Genome. 2023 Mar;16(1):e20279. https://doi.org/10.1002/tpg2.20279
Roy N, Verma RK, Chetia SK, Sharma V, Sen P, Modi MK. Molecular mapping of drought-responsive QTLs during the reproductive stage of rice using a GBS (genotyping-by-sequencing) based SNP linkage map. Molecular Biology Reports. 2023 Jan;50(1):65-76. https://doi.org/10.1007/s11033-022-08002-y
Wang X, Li BB, Ma TT, Sun LY, Tai L, Hu CH, Liu WT, Li WQ, Chen KM. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC Plant Biology. 2020 Dec;20(1):1-9. https://doi.org/10.1186/s12870- 019-2234-8
He M, Dijkstra FA. Drought effect on plant nitrogen and phosphorus: A meta analysis. New Phytologist. 2014 Dec;204(4):924-31. https://doi.org/10.1111/nph.12952
Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G, Aroca R. Plant responses to drought stress. Plant Responses to Drought: From Morphological to Molecular Features. Berlin (Germany): Springer. 2012;171-98. https://doi.org/10.1007/978-3-642-32653-0_7
Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Sun F, Sun X, Song D, Chen W, Zhang A, Wu X. Phosphorous application improves drought tolerance of Phoebe zhennan. Frontiers in Plant Science. 2017 Sep 13;8:1561. https://doi.org/10.3389%2Ffpls.2017.01561
Maroušek J, Strunecký O, Stehel V. Biochar farming: Defining economically perspective applications. Clean Technologies and Environmental Policy. 2019 Sep 15;21:1389-95. https://doi.org/10.1007/s10098-019-01728-7
Maroušek J, Kolá? L, Vochozka M, Stehel V, Maroušková A. Biochar reduces nitrate level in red beet. Environmental Science and Pollution Research. 2018 Jun;25:18200-03. https://doi.org/10.1007/s11356-018-2329-z
Stavkova J, Maroušek J. Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere. 2021 Aug 1;276:130097. https://doi.org/10.1016/j.chemosphere.2021.130097
Maroušek J, Minofar B, Maroušková A, Strunecký O, Gavurová B. Environmental and economic advantages of production and application of digestate biochar. Environmental Technology & Innovation. 2023 May 1;30:103109. https://doi.org/10.1016/j.eti.2023.103109
Shultana R, Tan Kee Zuan A, Yusop MR, Mohd Saud H, Ayanda AF. Effect of salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions. Agronomy. 2020 Jul 16;10(7):1030. https://doi.org/10.3390/agronomy10071030
Fukagawa NK, Ziska LH. Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology. 2019 Oct 11;65(Supplement):S2-S3. https://doi.org/10.3177/jnsv.65.S2
Luo LJ. Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany. 2010 Aug 1;61(13):3509-17. https://doi.org/10.1093/jxb/erq185
Gopi G, Manjula M. Speciality rice biodiversity of Kerala: Need for incentivising conservation in the era of changing climate. Current Science. 2018 Mar 10;997-1006. https://doi.org/10.18520/cs/v114/i05/997-1006
Khanna A, Anumalla M, Catolos M, Bartholomé J, Fritsche-Neto R, Platten JD, Pisano DJ, Gulles A, Sta Cruz MT, Ramos J, Faustino G. Genetic trends estimation in IRRIs rice drought breeding program and identification of high yielding drought-tolerant lines. Rice. 2022 Dec;15(1):14. https://doi.org/10.1186/s12284-022-00559-3
Basu S, Jongerden J, Ruivenkamp G. Development of the drought tolerant variety Sahbhagi Dhan: Exploring the concepts commons and community building. International Journal of the Commons. 2017 Jan 1;11(1):144-70. http://doi.org/10.18352/ijc.673
Pradhan SK, Pandit E, Bose LK, Reddy JN, Pattanaik SS, Meher J, Behera L. CR Dhan 801 and CR Dhan 802 Climate-Smart Rice Varieties of NRRI.
Sandhu N, Dixit S, Swamy BP, Raman A, Kumar S, Singh SP, Yadaw RB, Singh ON, Reddy JN, Anandan A, Yadav S. Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice. 2019 Dec;12:1-6. https://doi.org/10.1186/s12284-019-0269-y
Majumder RR, Sakhale S, Yadav S, Sandhu N, Hassan L, Hossain MA, Kumar A. Molecular breeding for improving drought tolerance in rice: Recent progress and future perspectives. In: Hossain MA, Hassan L, Md. Ifterkharuddaula K, Kumar A, editors. Molecular breeding for rice abiotic stress tolerance and nutritional quality. New York: Wiley. 2021;p. 53-74. https://doi.org/10.1002/9781119633174.ch3
Mas-ud MA, Matin MN, Fatamatuzzohora M, Ahamed MS, Chowdhury MR, Paul SK, Karmakar S, Kang SG, Hossain MS. Screening for drought tolerance and diversity analysis of Bangladeshi rice germplasms using morphophysiology and molecular markers. Biologia. 2022 Jan;77:21-37. https://doi.org/10.1007/s11756-021-00923-6
Kumar S, Dwivedi SK, Mondal S, Dubey AK, Tamta M. High yielding rice varieties for drought prone-ecology of Eastern India. In: Mishra JS, Kumar R, Saurabh K, Bhatt BP, editors. Conservation Agriculture for Climate Resilient Farming & Doubling Farmers’ Income, 246p. ICAR Research Complex for Eastern Region, Patna Training Manual No.17. Patna: ICAR Research Complex for Eastern Region. 2019;p. 17-23.
Babu RC, Zhang J, Blum A, Ho TH, Wu R, Nguyen HT. HVA1, A LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science. 2004 Apr 1;166(4):855-62. https://doi.org/10.1016/j.plantsci.2003.11.023
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences. 2006 Aug 29;103(35):12987-92. https://doi.org/10.1073/pnas.0604882103
Xiao B, Huang Y, Tang N, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics. 2007 Jun;115:35-46. https://doi.org/10.1007/s00122-007-0538-9
Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnology Letters. 2008 Dec;30:2191-98. https://doi.org/10.1007/s10529-008-9811-5
Du H, Liu L, You L, Yang M, He Y, Li X, Xiong L. Characterization of an inositol 1, 3, 4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Molecular Biology. 2011 Dec;77:547-63. https://doi.org/10.1007/s11103-011-9830-9
Kim JS, Park HM, Chae S, Lee TH, Hwang DJ, Oh SD, Park JS, Song DG, Pan CH, Choi D, Kim YH. A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes. Plos one. 2014 Mar 10;9(3):e90588. https://doi.org/10.1371/journal.pone.0090588
Cai S, Jiang G, Ye N, Chu Z, Xu X, Zhang J, Zhu G. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS One. 2015 Feb 3;10(2):e0116646. https://doi.org/10.1371/journal.pone.0116646
Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH. MicroRNA signatures of drought signaling in rice root. PloS one. 2016 Jun 8;11(6):e0156814. https://doi.org/10.1371/journal.pone.0156814
Yu J, Lai Y, Wu X, Wu G, Guo C. Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochemical and Biophysical Research Communications. 2016 Sep 16;478(2):703-09. https://doi.org/10.1016/j.bbrc.2016.08.010
Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, Luo L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Scientific Reports. 2016 Jul 25;6(1):30264. https://doi.org/10.1038/srep30264
Yoon S, Lee DK, Yu IJ, Kim YS, Choi YD, Kim JK. Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants. Plant Biotechnology Reports. 2017 Feb;11:53-62. http://dx.doi.org/10.1007/s11816-017-0430-2
Siddiqui ZS, Cho JI, Kwon TR, Ahn BO, Lee KS, Jeong MJ, Ryu TH, Lee SK, Park SC, Park SH. Physiological mechanism of drought tolerance in transgenic rice plants expressing Capsicum annuum methionine sulfoxide reductase B2 (CaMsrB2) gene. Acta Physiologiae Plantarum. 2014 May;36:1143-53.https://doi.org/10.1007/s11738-014-1489-9
Zhu MD, Zhang M, Gao DJ, Zhou K, Tang SJ, Zhou B, Lv YM. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. International Journal of Molecular Sciences. 2020 Mar 9;21(5):1857. https://doi.org/10.3390/ijms21051857
Chen Y, Shen J, Zhang L, Qi H, Yang L, Wang H, Wang J, Wang Y, Du H, Tao Z, Zhao T. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice. Molecular Plant. 2021 Aug 2;14(8):1297-311. https://doi.org/10.1016/j.molp.2021.05.001
Jung SE, Bang SW, Kim SH, Seo JS, Yoon HB, Kim YS, Kim JK. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. International Journal of Molecular Sciences. 2021 Jul 17;22(14):7656. https://doi.org/10.3390/ijms22147656
Jung SE, Kim TH, Shim JS, Bang SW, Yoon HB, Oh SH, Kim YS, Oh SJ, Seo JS, Kim JK. Rice NAC17 transcription factor enhances drought tolerance by modulating lignin accumulation. Plant Science. 2022 Oct 1;323:111404. https://doi.org/10.1016/j.plantsci.2022.111404
Pant BD, Lee S, Lee HK, Krom N, Pant P, Jang Y, Mysore KS. Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice. Plant Physiology. 2022 Jun;189(2):988-1004. https://doi.org/10.1093/plphys/kiac078
Song G, Son S, Lee KS, Park YJ, Suh EJ, Lee SI, Park SR. OsWRKY114 negatively regulates drought tolerance by restricting stomatal closure in rice. Plants. 2022 Jul 26;11(15):1938. https://doi.org/10.3390/plants11151938
Um T, Choi J, Park T, Chung PJ, Jung SE, Shim JS, Kim YS, Choi IY, Park SC, Oh SJ, Seo JS. Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes. Plant Direct. 2022 Jan;6(1):e374. https://doi.org/10.1002/pld3.374
Yang Y, Ma X, Xia H, Wang L, Chen S, Xu K, Yang F, Zou Y, Wang Y, Zhu J, Li T. Natural variation of Alfin-like family affects seed size and drought tolerance in rice. The Plant Journal. 2022 Oct 11; https://doi.org/10.1111/tpj.16003
Yang Y, Ma X, Xia H, Wang L, Chen S, Xu K, Yang F, Zou Y, Wang Y, Zhu J, Li T. Natural variation of Alfin-like family affects seed size and drought tolerance in rice. The Plant Journal. 2022 Oct 11; https://doi.org/10.1155/2020/8862792
Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research. 2016 Mar 1;184:13-24. https://doi.org/10.1016/j.micres.2015.12.003
Oladosu Y, Rafii MY, Samuel C, Fatai A, Magaji U, Kareem I, Kamarudin ZS, Muhammad II, Kolapo K. Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences. 2019 Jul 18; 20(14):3519. https://doi.org/10.3390/ijms20143519
Sahebi M, Hanafi MM, Rafii MY, Mahmud TM, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G. Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools and the WRKY gene family. BioMed Research International. 2018 Aug 7;2018. https://doi.org/10.1155/2018/3158474
Varshney RK, Barmukh R, Roorkiwal M, Qi Y, Kholova J, Tuberosa R, Reynolds MP, Tardieu F, Siddique KH. Breeding custom designed crops for improved drought adaptation. Advanced Genetics. 2021 Sep;2(3):e202100017. https://doi.org/10.1002/ggn2.202100017
Ghosh D, Xu J. Abiotic stress responses in plant roots: A proteomics perspective. Frontiers in Plant Science. 2014 Jan 24;5:6. https://doi.org/10.3389/fpls.2014.00006
Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Frontiers in Plant Science. 2013 Nov 5;4:442. https://doi.org/10.3389/fpls.2013.00442
Wang X, Samo N, Li L, Wang M, Qadir M, Jiang K, Qin J, Rasul F, Yang G, Hu Y. Root distribution and its impacts on the drought tolerance capacity of hybrid rice in the sichuan basin area of China. Agronomy. 2019 Feb 12;9(2):79. https://doi.org/10.3390/agronomy9020079
Manivannan P, Jaleel CA, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GA, Panneerselvam R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces. 2007 Oct 1;59(2):141-49.https://doi.org/10.1016/j.colsurfb.2007.05.002
Duan J, Cai W. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. https://doi.org/10.1371/journal.pone.0045117
Lipiec J, Doussan C, Nosalewicz A, Kondracka K. Effect of drought and heat stresses on plant growth and yield: A review. International Agrophysics. 2013;27(4). http://dx.doi.org/10.2478/intag-2013-0017
Jia L, Xie Y, Wang Z, Luo L, Zhang C, Pélissier PM, Parizot B, Qi W, Zhang J, Hu Z, Motte H. Rice plants respond to ammonium stress by adopting a helical root growth pattern. The Plant Journal. 2020 Nov;104(4):1023-37. https://doi.org/10.1111/tpj.14978
Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osório ML, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany. 2002 Jun 15;89(7):907-16. https://doi.org/10.1093/aob/mcf105
Farooq M, Basra SM, Wahid A, Ahmad N, Saleem BA. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science. 2009 Aug;195(4):237-46. https://doi.org/10.1111/j.1439-037X.2009.00365.x
Anjum SA, Xie X, Wang LC, Saleem MF, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 2011 May 4;6(9):2026-32. http://dx.doi.org/10.1007/s11738-015-1998-1
Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, Von Korff M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany. 2013 Aug 1;64(11):3201-12. https://doi.org/10.1093/jxb/ert158
Fukai S, Cooper M, Saxena NP, O'Toole JC. Field screening of adaptability in drought-prone rainfed lowland rice: ACIAR experience in Thailand and Laos. In: Saxena NP, O'Toole JC, editors. Field screening for drought tolerance in crop plants with emphasis on rice. Proc Int Workshop Field Screening Drought Tolerance Rice, Patancheru, India. Patancheru, India: International Crops Research Institute for the SemiArid Tropics. 2002;p. 61-62.
Zhu R, Wu F, Zhou S, Hu T, Huang J, Gao Y. Cumulative effects of drought–flood abrupt alternation on the photosynthetic characteristics of rice. Environmental and Experimental Botany. 2020 Jan 1;169:103901. https://doi.org/10.1016/j.envexpbot.2019.103901
Borrell A, Hammer G, Van Oosterom E. Stay green: A consequence of the balance between supply and demand for nitrogen during grain filling?. Annals of Applied Biology. 2001 Feb;138(1):91-95. https://doi.org/10.1111/j.1744-7348.2001.tb00088.x
Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R. Physiological and multi-omics approaches for explaining drought stress tolerance and supporting sustainable production of rice. Frontiers in Plant Science. 2022 Jan 27;12:3242. https://doi.org/10.3389/fpls.2021.803603
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013 Mar 1;140(5):943-50. https://doi.org/10.1242/dev.086363
Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology. 2007 Mar;143(3):1362-71. https://doi.org/10.1104/pp.106.091561
Singh D, Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science. 2015 Oct 29;6:895. https://doi.org/10.3389%2Ffpls.2015.00895
Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 2010 Aug;232:765-74. https://doi.org/10.1007/s00425-010-1208-8
Bandurska H, Stroi?ski A, Kubi? J. The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiologiae Plantarum. 2003 Sep;25(3):279-85. https://doi.org/10.1007/s11738-003-0009-0
Mishra SS, Behera PK, Panda D. Genotypic variability for drought tolerance-related morpho-physiological traits among indigenous rice landraces of Jeypore tract of Odisha, India. Journal of Crop Improvement. 2019 Mar 4;33(2):254-78. https://doi.org/10.1080/15427528.2019.1579138
Kumar A, Basu S, Ramegowda V, Pereira A. Mechanisms of drought tolerance in rice. In: Sasaki T, editor. Achieving Sustainable Cultivation of Rice, 3 rdedn,1st edn. UK: Burleigh Dodds Science Publishing Limited. 2017;p. 1-34. https://doi.org/10.19103/AS.2016.0003.08
Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MA, Gopinath KA, Venkatesh G, Yadav SK, Singh VK, Awasthi NK. Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. International Journal of Molecular Sciences. 2022 Jul 31;23(15):8519. https://doi.org/10.3390%2Fijms23158519
Waraich EA, Ahmad R, Ashraf MY. Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science. 2011 Jun 1;5(6):764-77.
Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant Journal. 2010 Mar;61(6):1041-52. https://doi.org/10.1111/j.1365-313X.2010.04124.x
Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature. 2012 Aug 23;488(7412):535-39. https://doi.org/10.1038/nature11346
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics. 2013 Sep;45(9):1097-102. https://doi.org/10.1038/ng.2725
Ramchander S, Raveendran M, Robin S. Mapping QTLs for physiological traits associated with drought tolerance in rice (Oryza sativa L.). J Invest Genom. 2016 Oct 31;3(3):56-61. https://doi.org/10.15406/jig.2016.03.00052
Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li Z. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica. 2008 Jun;133:187-200. https://doi.org/10.1007/s10709-007-9199-5
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL. Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science. 2016 Jul 14;7:1029. https://doi.org/10.3389/fpls.2016.01029
Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnology. 2016 May;16:7-20. https://doi.org/10.1186/s12896-016-0261-1
Singh S, Kumar A, Panda D, Modi MK, Sen P. Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam. Plant Gene. 2020 Mar 1;21:100213. https://doi.org/10.1016/j.plgene.2019.100213
Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany. 2010 Oct 1;61(15):4157-68. https://doi.org/10.1093/jxb/erq237
Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior. 2010 Jan 1;5(1):26-33. https://doi.org/10.4161/psb.5.1.10291
Bhattacharjee S, Dey N. Redox metabolic and molecular parameters for screening drought tolerant indigenous aromatic rice cultivars. Physiology and Molecular Biology of Plants. 2018 Jan;24:7-23. https://doi.org/10.1007/s12298-017-0484-1
Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014 Nov 27;515(7528):505-11. https://doi.org/10.1038/nature13855
Jayne B, Quigley M. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: A meta-analysis. Mycorrhiza. 2014 Feb;24:109-19. https://doi.org/10.1007/s00572-013-0515-x
Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K, Hughes E, Khan S, Lang A, Machmuller M, Taylor M. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: Mini-review. Fungal Ecology. 2014 Aug 1;10:3-19. https://doi.org/10.1016/j.funeco.2014.01.005
Li X, Sarah P. Arylsulfatase activity of soil microbial biomass along a Mediterranean-arid transect. Soil Biology and Biochemistry. 2003 Jul 1;35(7):925-34. https://doi.org/10.1016/S0038-0717(03)00143-3
Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, Patel JS. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Scientific Reports. 2020 Mar 16;10(1):1-7. https://doi.org/10.1038/s41598-020-61140-w
Mohsenifard E, Ghabooli M, Mehri N, Bakhshi B. Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice. Journal of Plant Molecular Breeding. 2017 Jun 1;5(1):10-18. https://doi.org/10.22058/jpmb.2017.60864.1129
Omar SA, Fetyan NA, Eldenary ME, Abdelfattah MH, Abd-Elhalim HM, Wrobel J, Kalaji HM. Alteration in expression level of some growth and stress-related genes after rhizobacteria inoculation to alleviate drought tolerance in sensitive rice genotype. Chemical and Biological Technologies in Agriculture. 2021 Dec;8:1-9. https://doi.org/10.1186/s40538-021-00237-4
Yadav VK, Raghav M, Sharma SK, Bhagat N. Rhizobacteriome: Promising candidate for conferring drought tolerance in crops. J Pure Appl Microbiol. 2020 Mar 1;14(1):73-92. https://doi.org/10.22207/JPAM.14.1.10
Mathur P, Roy S. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Physiologia Plantarum. 2021 Jun;172(2):1016-29. https://doi.org/10.1111/ppl.13338
Moyano FE, Manzoni S, Chenu C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biology and Biochemistry. 2013 Apr 1;59:72-85. https://doi.org/10.1016/j.soilbio.2013.01.002
Shamsudin NA, Swamy BM, Ratnam W, Sta. Cruz MT, Raman A, Kumar A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics. 2016 Dec;17:1-4. https://doi.org/10.1186/s12863-016-0334-0
Dixit S, Singh A, Sandhu N, Bhandari A, Vikram P, Kumar A. Combining drought and submergence tolerance in rice: Marker-assisted breeding and QTL combination effects. Molecular Breeding. 2017 Dec;37:1-2. https://doi.org/10.1007/s11032-017-0737-2
Kim SL, Kim N, Lee H, Lee E, Cheon KS, Kim M, Baek J, Choi I, Ji H, Yoon IS, Jung KH. High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta. 2020 Sep;252(3):38. https://doi.org/10.1007/s00425-020-03436-9
Sinha P, Singh VK, Saxena RK, Khan AW, Abbai R, Chitikineni A, Desai A, Molla J, Upadhyaya HD, Kumar A, Varshney RK. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). Plant Biotechnology Journal. 2020 Dec;18(12):2482-90. https://doi.org/10.1111/pbi.13422
Varshney RK, Barmukh R, Roorkiwal M, Qi Y, Kholova J, Tuberosa R, Reynolds MP, Tardieu F, Siddique KH. Breeding custom-designed crops for improved drought adaptation. Advanced Genetics. 2021 Sep;2(3):e202100017. https://doi.org/10.1002/ggn2.202100017
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant abiotic stress proteomics: Tmajor factors determining alterations in cellular proteome. Frontiers in Plant Science. 2018 Feb 8;9:122. https://doi.org/10.3389/fpls.2018.00122
Han B, Ma X, Cui D, Geng L, Cao G, Zhang H, Han L. Parallel reaction monitoring revealed tolerance to drought proteins in weedy rice (Oryza sativa f. spontanea). Scientific Reports. 2020 Jul 31;10(1):12935. https://doi.org/10.1038/s41598-020-69739-9
Shi F, Dong Y, Wang M, Qiu D. Transcriptomics analyses reveal that OsMIOX improves rice drought tolerance by regulating the expression of plant hormone and sugar related genes. Plant Biotechnology Reports. 2020 Jun;14:339-49. https://doi.org/10.1007/s11816-020-00608-7
Ali S, Tyagi A, Bae H. Ionomic approaches for discovery of novel stress-resilient genes in plants. International Journal of Molecular Sciences. 2021 Jul 2;22(13):7182. https://doi.org/10.3390/ijms22137182
Barnaby JY, Rohila JS, Henry CG, Sicher RC, Reddy VR, McClung AM. Physiological and metabolic responses of rice to reduced soil moisture: Relationship of water stress tolerance and grain production. International Journal of Molecular Sciences. 2019 Apr 15;20(8):1846. https://doi.org/10.3390/ijms20081846
Gayacharan, Joel AJ. Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiology and Molecular Biology of Plants. 2013 Jul;19:379-87. https://doi.org/10.1007/s12298-013-0176-4
Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Molecular Biology. 2007 Jan;63:151-69. https://doi.org/10.1007/s11103-006-9079-x
Oikawa A, Matsuda F, Kusano M, Okazaki Y, Saito K. Rice metabolomics. Rice. 2008 Sep;1(1):63-71. https://doi.org/10.1007/s12284-008-9009-4
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research. 2012 Jan 1;40(D1):D109-14. https://doi.org/10.1093/nar/gkr988
Morreel K, Saeys Y, Dima O, Lu F, Van de Peer Y, Vanholme R, Ralph J, Vanholme B, Boerjan W. Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks. The Plant Cell. 2014 Mar;26(3):929-45. https://doi.org/10.1105/tpc.113.122242
Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Midford PE, Ong Q, Ong WK, Paley S. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Research. 2018 Jan 4;46(D1):D633-39. https://doi.org/10.1093/nar/gkx935
Hong WJ, Kim YJ, Chandran AK, Jung KH. Infrastructures of systems biology that facilitate functional genomic study in rice. Rice. 2019 Dec;12:1-7. https://doi.org/10.1186/s12284-019-0276-z
Chen L, Lu W, Wang L, Xing X, Chen Z, Teng X, Zeng X, Muscarella AD, Shen Y, Cowan A, McReynolds MR. Metabolite discovery through global annotation of untargeted metabolomics data. Nature Methods. 2021 Nov;18(11):1377-85. https://doi.org/10.1038/s41592-021-01303-3
Climate-smart, drought-tolerant rice varieties for improved crop outputs for West Bengal farmers. 2020 Feb; https://www.irri.org/news-and-events/news/climate-smart-drought-tolerant-rice-varieties-improved-crop-outputs-west bengal#:~:text=IRRI%20has%20developed%20and%20released,per%20hectare%20under%20drought%20conditions
Hairmansis A, Hermanasari R, Lestari AP, Sasmita P. Drought tolerant rice breeding lines developed for rainfed lowland areas. IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2020;423: p. 012019. https://doi.org/10.1088/1755-1315/423/1/012019
Rai AK, Dash SR, Behera N, Behera TK. Performance of drought tolerant rice varieties in Malkangiri district of South Eastern Ghat Zone of Odisha. Current Agriculture Research Journal. 2020 Aug 1;8(2). http://dx.doi.org/10.12944/CARJ.8.2.12
Sandhu N, Yadav S, Kumar A. Recent efforts in developing high-yield, drought-tolerant rice varieties. In: Tuteja N, Tuteja R, Passricha N, Saifi SK, editors. Advancement in Crop Improvement Techniques. Woodhead publishing. 2020;p. 111-28. https://doi.org/10.1016/B978-0-12-818581-0.00008-5
Kader MA, Aditya TL, Majumder RR, Hore TK, Shalahuddin AK, Amin A. Development of drought tolerant rice variety BRRI dhan66 for rainfed lowland ecosystem of Bangladesh. Bangladesh Rice J. 2019;23(1):45-55. https://doi.org/10.1016/j.heliyon.2022.e09490
Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. International Journal of Molecular Sciences. 2020 Jan 25;21(3):782. https://doi.org/10.3390/ijms21030782
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ES, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AA, El-Mageed A, Taia A. Role of nanoparticles in enhancing crop tolerance to abiotic stress: A comprehensive review. Frontiers in Plant Science. 2022 Nov 2;13:946717. https://doi.org/10.3389/fpls.2022.946717
Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition and grain fortification. Science of the Total Environment. 2019 Oct 20;688:926-34. https://doi.org/10.1016/j.scitotenv.2019.06.392
Maroušek J, Maroušková A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohatá A, K?íž P, Bárta J, ?erný P, Olšan P. Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers. 2022 Jan 10;14(2):266. https://doi.org/10.3390/polym14020266
Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU, Wu Z. The role of nanoparticles in plant biochemical, physiological and molecular responses under drought stress: A review. Frontiers in Plant Science. 2022 Nov 24;13:976179. https://doi.org/10.3389%2Ffpls.2022.976179
Bogati K, Walczak M. The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy. 2022 Jan 13;12(1):189. https://doi.org/10.3390/agronomy12010189
Rajput VD, Kumari A, Upadhyay SK, Minkina T, Mandzhieva S, Ranjan A, Sushkova S, Burachevskaya M, Rajput P, Konstantinova E, Singh J. Can nanomaterials improve the soil microbiome and crop productivity?. Agriculture. 2023 Jan 18;13(2):231. https://doi.org/10.3390/agriculture13020231
Dume B, Mosissa T, Nebiyu A. Effect of biochar on soil properties and lead (Pb) availability in a military camp in South West Ethiopia. African Journal of Environmental Science and Technology. 2016 Mar 29;10(3):77-85. https://doi.org/10.5897/AJEST2015.2014
Rawat J, Saxena J, Sanwal P. Biochar: A sustainable approach for improving plant growth and soil properties. Biochar-An Imperative Amendment for Soil and the Environment. 2019 Jan 8;1-7. https://doi.org/10.5772/intechopen.82151
Downloads
Published
Versions
- 05-01-2024 (2)
- 05-11-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Debapriya Choudhury, Chandrama Mukherjee, Shinjan Dey , Sikha Dutta
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).