A review on metabolomics for quality improvement of fruit crops
DOI:
https://doi.org/10.14719/pst.2157Keywords:
Metabolomics, Stress, Quality, Improvement, Fruit crops, MetabolitesAbstract
The field of metabolomics is gaining ground in plant biology, and its potential uses in agricultural biotechnology are expanding. Metabolomics is the study of metabolites, which are extremely small molecules. The phenotype correlates more strongly with the metabolomic profile than with the genomic, transcriptomic, or proteomic profiles. Plant metabolic profiling is another application of metabolomics that has been used to identify previously uncharacterized genes and their roles. The use of metabolomics to evaluate mutants and transgenic plants, track fruit development, determine quality, detect disease resistance, determine abiotic stress tolerance, etc., has become increasingly important. Metabolomics has also been applied to plant studies, which have become increasingly important in efforts to improve fruit quality. We first assess the profound influence metabolomics has had over the past decade, then provide an introduction to the field, its current contribution, and the hope it holds for enhancing fruit production.
Downloads
References
Fiehn O. Metabolomics-the link between genotypes and phenotypes. In: Town C. (eds). Functional Genomics, Springer: Dordrecht. 2002;155-71. https://link.springer.com/chapter/10.1007/978-94-010-0448-0_11
Parry MA, Hawkesford MJ. An integrated approach to crop genetic improvement. J Int Plant Biol. 2012; 54(4):250-59. https://doi.org/10.1111/j.1744-7909.2012.01109.x
Jones OA. Metabolomics and systems biology in human health and medicine. Cabi; 2014; ISBN: 978178064200. http://dx.doi.org/10.1079/9781780642000.0020
Hong J, Yang L, Zhang D, Shi J. Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci. 2016;17:767 https://doi.org/10.3390/ijms17060767
Alawiye TT, Babalola OO. Metabolomics: Current application and prospects in crop production. Biologia. 2021; 5:1-3. https://doi.org/10.2478/s11756-020-00574-z
Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for plant improvement: status and prospects. Front Plant Sci. 2017;8:1302 https://doi.org/10.3389/fpls.2017.01302
Pott DM, Durán-Soria S, Osorio S, Vallarino JG. Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits. CABI Agric Biosci. 2021; 2(1):1-20 https://doi.org/10.1186/s43170-020-00021-8
Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJ. Genetic analysis of metabolome–phenotype interactions: from model to crop species. Trends Gen. 2013; 29:41-50 https://doi.org/10.1016/j.tig.2012.09.006
Sharma V, Gupta P, Priscilla K, Hangargi B, Veershetty A, Ramrao DP, Suresh S, Narasanna R, Naik GR, Kumar A, Guo B. Metabolomics intervention towards better understanding of plant traits. Cells. 2021;10:346. https://doi.org/10.3390/cells10020346
Udayakumar M, Prem Chandar D, Arun N, Mathangi J, Hemavathi K, Seenivasagam R. PMDB: Plant Metabolome Database—a metabolomic approach. Medicinal Chem Res. 2012; 21(1):47-52. https://doi.org/10.1007/s00044-010-9506-z
Belgacem I, Pangallo S, Abdelfattah A, Romeo FV, Cacciola SO, Li Destri Nicosia MG, Ballistreri G, Schena L. Transcriptomic analysis of orange fruit treated with pomegranate peel extract (PGE). Plants. 2019;8(4):101. https://doi.org/10.3390/plants8040101
Li J, Yan G, Duan X, Zhang K, Zhang X, Zhou Y, Wu C, Zhang X, Tan S, Hua X, Wang J. Research progress and trends in metabolomics of fruit trees. Front. Plant Sci. 2022;13. https://doi.org/10.3389/2Ffpls.2022.881856
Amara A, Frainay C, Jourdan F, Naake T, Neumann S, Novoa-Del-Toro EM, Salek RM, Salzer L, Scharfenberg S, Witting M. Networks and Graphs Discovery in Metabolomics Data Analysis and Interpretation. Front. Mol. Biosci. 2022:223.
Gupta S, Schillaci M, Roessner U. Metabolomics as an emerging tool to study plant–microbe interactions. Emerg Top Life Sci. 2022;6(2):175-83. https://doi.org/10.1042/ETLS20210262
Kruger NJ, Ratcliffe RG. Pathways and fluxes: exploring the plant metabolic network. J Exp Bot. 2012;63(6):2243-6. https://doi.org/10.1093/jxb/ers073
Toubiana D, Fernie AR, Nikoloski Z, Fait A. Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol. 2013;31(1):29-36. https://doi.org/10.1016/j.tibtech.2012.10.011
Kuhalskaya A, Wijesingha Ahchige M, Perez de Souza L, Vallarino J, Brotman Y, Alseekh S. Network analysis provides insight into tomato lipid metabolism. Metabolites. 2020; 10(4):152. https://doi.org/10.3390/metabo10040152
Tohge T, de Souza LP, Fernie AR. Genome-enabled plant metabolomics. J Chromatogr B. 2014; 966:7-20. https://doi.org/10.1016/j.jchromb.2014.04.003
Toubiana D, Fernie AR, Nikoloski Z, Fait, A. Network analysis: Tackling complex data to study plant metabolism. Trends Biotechnol. 2013;31:29–36. https://doi.org/10.1016/j.tibtech.2012.10.011
Kleessen S, Nikoloski Z. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations. BMC Syst. Biol. 2012;6:16. https://doi.org/10.1186/1752-0509-6-16
Farre G, Twyman RM, Christou P, Capell T, Zhu C. Knowledge-driven approaches for engineering complex metabolic pathways in plants. Curr Opin Biotechnol. 2014; 32:54-60. https://doi.org/10.1016/j.copbio.2014.11.004
Fernie AR, Schauer N. Metabolomics-assisted breeding: a viable option for crop improvement. Trends Gen. 2009;25:39-48. https://doi.org/10.1016/j.tig.2008.10.010
Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K. KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol. 2012; 53:e1- e1. https://doi.org/10.1093/pcp/pcr165
Okazaki Y, Saito K. Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep. 2012;6:1-5. https://doi.org/10.1007/s11816-011-0191-2
Khakimov B, Bak S, Engelsen SB. High-throughput cereal metabolomics: Current analytical technologies, challenges and perspectives. J Cereal Sci. 2014;59:393-418. https://doi.org/10.1016/j.jcs.2013.10.002
Sweetlove LJ, Obata T, Fernie AR. Systems analysis of metabolic phenotypes: what have we learnt. Trends Plant Sci. 2014;19(4):222-30. https://doi.org/10.1016/j.tplants.2013.09.005
Begou O, Gika HG, Wilson ID, Theodoridis G. Hyphenated MS-based targeted approaches in metabolomics. Analyst. 2017;142(17):3079-100. https://pubs.rsc.org/en/content/articlelanding/2017/an/c7an00812k/unauth
Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 2012;69:3225–3243. https://doi.org/10.1007/s00018-012-1091-5
Azzi-Achkouty S, Estephan N, Ouaini N, Rutledge DN. Headspace solid-phase microextraction for wine volatile analysis. Crit Rev Food Sci Nutr. 2017;57(10):2009-20. https://doi.org/10.1080/10408398.2014.957379
Kroymann J. Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol. 2011;14(3):246-51. https://doi.org/10.1016/j.pbi.2011.03.021
Ramautar R, Somsen GW, de Jong GJ. CE?MS for metabolomics: Developments and applications in the period 2010–2012. Electrophoresis. 2013;34(1):86-98. https://doi.org/10.1002/elps.201200390
Monton MR, Soga T. Metabolome analysis by capillary electrophoresis–mass spectrometry. J Chromatography A. 2007;1168(1-2):237-46. https://doi.org/10.1016/j.chroma.2007.02.065
Krishnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot. 2005;56(410):255-65. https://doi.org/10.1093/jxb/eri010
Goulas V, Minas IS, Kourdoulas PM, Lazaridou A, Molassiotis AN, Gerothanassis IP, Manganaris GA. 1H NMR metabolic fingerprinting to probe temporal postharvest changes on qualitative attributes and phytochemical profile of sweet cherry fruit. Front Plant Sci. 2015;6:959. https://doi.org/10.3389/fpls.2015.00959
Bidlack WR, Omaye ST, Meskin MS, Topham DKW and Swanson CA. Vegetables, fruits, and cancer risk: the role of phytochemicals. p. 1–12. In: Phytochemicals: A New Paradigm, Bidlack, W.R., S.T. Omaye., M.S. Meskin and D.K.W. Topham (eds.). CRC Press, Boca Raton; 1998. p. 1-12.
Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol. 2008;148:730-50. https://doi.org/10.1104/pp.108.120691
Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom. 2007; 8:1-42. https://doi.org/10.1186/1471-2164-8-429
Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol. 2010; 154:1439-59. https://doi.org/10.1104/pp.110.160275
Rudell DR, Mattheis JP, Curry EA. Prestorage ultraviolet? white light irradiation alters apple peel metabolome. J Agri Food Chem. 2008;56(3):1138-47. https://doi.org/10.1021/jf072540m
Ding Y, Chang J, Ma Q, Chen L, Liu S, Jin S, Han J, Xu R, Zhu A, Guo J, Luo Y. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Plant Physiol. 2015;168(1):357-76. https://doi.org/10.1104/pp.114.255711
Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR, Drincovich MF. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol. 2011;157:1696-710. https://doi.org/10.1104/pp.111.186064
Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, Fang C. Metabolic profiling of strawberries (Fragaria× ananassa Duch.) during fruit development and maturation. J Exp Bot. 2011;1:62:1103-18. https://doi.org/10.1093/jxb/erq343
Oikawa A, Otsuka T, Nakabayashi R, Jikumaru Y, Isuzugawa K, Murayama H, Saito K, Shiratake K. Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLoS One. 2015;13(10):e0131408. https://doi.org/10.1371/journal.pone.0131408
Flamini R, De Rosso M, Bavaresco L. Study of grape polyphenols by liquid chromatography-high-resolution mass spectrometry (UHPLC/QTOF) and suspect screening analysis. J Anal Methods Chem. 2015;1-10.350259. 10.1155/2015/350259. PMID: 25734021; PMCID:PMC4334975
Cuadros-Inostroza A, Ruíz-Lara S, González E, Eckardt A, Willmitzer L, Pena-Cortés H. GC–MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage-and cultivar-dependent connectivity of primary metabolites. Metabolomics. 2016;12:39. https://doi.org/10.1007/s11306-015-0927-z
Grassmann J, Hippeli S, Elstner EF. Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem. 2002;40:471-8. https://doi.org/10.1016/S0981-9428(02)01395-5
Slisz, A.M., Breksa III, A.P., Mishchuk, D.O., McCollum, G. and Slupsky, C.M. Metabolomic analysis of citrus infection by ‘Candidatus Liberibacter’reveals insight into pathogenicity. J Proteome Res. 2012;11(8):4223-30. https://doi.org/10.1021/pr300350x
Balmer D., Flors V., Glauser G., Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013;4:82. https://doi.org/10.3389/fpls.2013.00082 Balmer D., Flors V., Glauser G., Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013;4:82. https://doi.org/10.3389/fpls.2013.00082
Mikulic-Petkovsek M., Schmitzer V., Slatnar A., Weber N., Veberic R., Stampar F., Munda A. and Koron D. Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection. J Agric Food Chem. 2013; 61(25):5987-95. https://doi.org/10.1021/jf402105g
Augustyn, W.A., Regnier, T., Combrinck, S. and Botha, B.M. Metabolic profiling of mango cultivars to identify biomarkers for resistance against Fusarium infection. Phytochem Lett.2014; 10,pp.civ-cx.https://doi.org/10.1016/j.phytol.2014.05.014
Nagpala EG, Guidarelli M, Gasperotti M, Masuero D, Bertolini P, Vrhovsek U, Baraldi E. Polyphenols variation in fruits of the susceptible strawberry cultivar Alba during ripening and upon fungal pathogen interaction and possible involvement in unripe fruit tolerance. J Agric Food Chem. 2016; 64(9):1869-78. https://doi.org/10.1021/acs.jafc.5b06005
Yun Z, Gao H, Liu P, Liu S, Luo T, Jin S, Xu Q, Xu J, Cheng Y, Deng X. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol. 2013; 13(1):1-6. https://doi.org/10.1186/1471-2229-13-44
Wang J, Sun L, Xie L, He Y, Luo T, Sheng L, Luo Y, Zeng Y, Xu J, Deng X, Cheng Y. Regulation of cuticle formation during fruit development and ripening in ‘Newhall Navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. Plant Sci. 2016;243:131-44. https://doi.org/10.1016/j.plantsci.2015.12.010
Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics. 2007; 7:111-34. https://doi.org/10.1007/s10142-006-0039-y
Cramer GR. Abiotic stress and plant responses from the whole vine to the genes. Aus J Grape Wine Res. 2010;16:86-93.
Pedreschi R, Franck C, Lammertyn J, Erban A, Kopka J, Hertog M, Verlinden B, Nicolaï B. Metabolic profiling of ‘Conference Pears under low oxygen stress. Postharvest Biol Technol. 2009;51:123-30. https://doi.org/10.1111/j.1755-0238.2009.00058.x
Lee J, Mattheis JP, Rudell DR. Antioxidant treatment alters metabolism associated with internal browning in Braeburn Apples during controlled atmosphere storage. Postharvest Biol Technol. 2012;68:32-42. https://doi.org/10.1016/j.postharvbio.2012.01.009
Wulff-zottele CR, Gatzke N, Kopka J, Orellana A, Hoefgen R, Fisahn J, Hesse H. Photosynthesis and metabolism interact during acclimation of Arabidopsis thaliana to high irradiance and sulphur depletion. Plant Cell Env. 2010;33:1974-88. https://doi.org/10.1111/j.1365-3040.2010.02199.x
Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, Fait A. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol. 2013;13(1):1-6. https://doi.org/10.1186/1471-2229-13-184
Chen L, Zhao X, Wu JE, He Y, Yang H. Metabolic analysis of salicylic acid-induced chilling tolerance of bananas using NMR. Food Research Int. 2020; 128:108796. https://doi.org/10.1016/j.foodres.2019.108796
Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol. 2014;164(4):1759-71. https://doi.org/10.1104/pp.113.231720
Tian S, Qin G, Li B, Wang Q, Meng X. Effects of salicylic acid on disease resistance and postharvest decay control of fruits. Stewart Postharvest Rev. 2007;6(2):1-7. 10.2212/spr.2007.6.2
Zhu A, Li W, Ye J, Sun X, Ding Y, Cheng Y, Deng X. Microarray expression profiling of postharvest Ponkan mandarin (Citrus reticulate L.) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. J Int Plant Biol. 2011;53:358–74. https://doi.org/10.1111/j.1744-7909.2011.01035.x
Ma Q, Ding Y, Chang J, Sun X, Zhang L, Wei Q, Cheng Y, Chen L, Xu J, Deng X. Comprehensive insights on how 2, 4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches. J Exp Bot. 2014; 65(1):61-74. https://doi.org/10.1093/jxb/ert344
Hatoum D, Annaratone C, Hertog ML, Geeraerd AH, Nicolai BM. Targeted metabolomics study of ‘Braeburn Apples during long-term storage. Postharvest Biol Technol. 2014; 96:33-41. https://doi.org/10.1016/j.postharvbio.2014.05.004
Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H (2011) Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLoS One. 2011;6(2):e16989. https://doi.org/10.1371/journal.pone.0016989
He Y, Han J, Liu R, Ding Y, Wang J, Sun L, Yang X, Zeng Y, Wen W, Xu J, Zhang H. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Horti Res. 2018; 5(1):1-4. https://doi.org/10.1038/s41438-018-0051-0
Wang Z, Cui Y, Vainstein A, Chen S, Ma H. Regulation of fig (Ficus carica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci. 2017; 8:1990. https://doi.org/10.3389/fpls.2017.01990
Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot. 2007; 58:4161-71. https://doi.org/10.1093/jxb/erm273
Pan Z, Li Y, Deng X, Xiao S. Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics. 2014; 10(3):508-23. https://doi.org/10.1007/s11306-013-0597-7
Fuzfai Z, Katona ZF, Kovacs E, Molnar-Perl I. Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem. 2004;52(25):7444-7452. https://doi.org/10.1021/jf040118p
Amaki K, Saito E, Taniguchi K, Joshita K, Murata M. Role of chlorogenic acid quinone and interaction of chlorogenic acid quinone and catechins in the enzymatic browning of apple. Biosci Biotechnol Biochem. 2011;75(5)100444:1-4. https://doi.org/10.1271/bbb.100444
Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M. QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus× domestica Borkh.). J Exp Bot. 2010;61(11):3029-39. https://doi.org/10.1093/jxb/erq130
Tohge T, Mettler T, Arrivault S, Carroll AJ, Stitt M, Fernie A. From models to crop species: caveats and solutions for translational metabolomics. Front Plant Sci. 2011; 2:61. https://doi.org/10.3389/fpls.2011.00061
Li, P., Ma, F. and Cheng, L. Primary and secondary metabolism in the sun?exposed peel and the shaded peel of apple fruit. Physiol Plant. 2013;148(1):9-24. https://doi.org/10.1111/j.1399-3054.2012.01692.x
Heng Z, Sheng O, Huang W, Zhang S, Fernie AR, Motorykin I, Kong Q, Yi G, Yan S. Integrated proteomic and metabolomic analysis suggests high rates of glycolysis are likely required to support high carotenoid accumulation in banana pulp. Food Chem. 2019; 297:125016. https://doi.org/10.1016/j.foodchem.2019.125016
Son HS, Hwang GS, Ahn HJ, Park WM, Lee CH, Hong YS. Characterization of wines from grape varieties through multivariate statistical analysis of 1H NMR spectroscopic data. Food Res Int. 2009;42:1483-91. https://doi.org/10.1016/j.foodres.2009.08.006
Wang MY, MacRae E, Wohlers M, Marsh K. Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward’and A. chinensis ‘Hort16A’. Postharvest Biol Technol. 2011;59(1):16-24. https://doi.org/10.1016/j.postharvbio.2010.08.010
Akhatou I, González-Domínguez R, Fernández-Recamales Á. Investigation of the effect of genotype and agronomic conditions on metabolomic profiles of selected strawberry cultivars with different sensitivity to environmental stress. Plant Physiol Biochem. 2016;101:14-22. https://doi.org/10.1016/j.plaphy.2016.01.016
Commisso M, Bianconi M, Di Carlo F, Poletti S, Bulgarini A, Munari F, Negri S, Stocchero M, Ceoldo S, Avesani L, Assfalg M. Multi-approach metabolomics analysis and artificial simplified phytocomplexes reveal cultivar-dependent synergy between polyphenols and ascorbic acid in fruits of the sweet cherry (Prunus avium L.). PLoS One. 2017;12(7):e0180889. https://doi.org/10.1371/journal.pone.0180889
Vikram A, Prithiviraj B, Hamzehzarghani H, Kushalappa AC. Volatile metabolite profiling to discriminate diseases of McIntosh apple inoculated with fungal pathogens. J Sci Food Agric. 2004;84:1333-40.
Cuthbertson D, Andrews PK, Reganold JP, Davies NM, Lange BM. Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J Agric Food Chem. 2012;60:8552-60. https://doi.org/10.1002/jsfa.1828
Nardozza S, Boldingh HL, Osorio S, Höhne M, Wohlers M, Gleave AP, MacRae EA, Richardson AC, Atkinson RG, Sulpice R, Fernie AR. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. J Exp Bot. 2013;64:5049-63. https://doi.org/10.1093/jxb/ert293
Hatoum D, Annaratone C, Hertog ML, Geeraerd AH, Nicolai BM. Targeted metabolomics study of ‘Braeburn Apples during long-term storage. Postharvest Biol Technol. 2014;96:33-41. https://doi.org/10.1016/j.postharvbio.2014.05.004
Ainalidou A, Tanou G, Belghazi M, Samiotaki M, Diamantidis G, Molassiotis A, Karamanoli K. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. J Proteomics. 2016;143:318-33. https://doi.org/10.1016/j.jprot.2016.02.013
Cebulj A, Cunja V, Mikulic-Petkovsek M, Veberic R. Importance of metabolite distribution in apple fruit. Sci Hort. 2017;214:214-20. https://doi.org/10.1016/j.scienta.2016.11.048
Lim S, Lee JG, Lee EJ. Comparison of fruit quality and GC–MS-based metabolite profiling of kiwifruit ‘Jecy green’: Natural and exogenous ethylene-induced ripening. Food Chem. 2017;234:81-92. https://doi.org/10.1016/j.foodchem.2017.04.163
Win NM, Yoo J, Lwin HP, Lee EJ, Kang IK and Lee J. Effects of 1-methylcyclopropene and aminoethoxyvinylglycine treatments on fruit quality and antioxidant metabolites in cold-stored ‘Sangjudungsi’persimmons. Hort Environ Biotechnol. 2021; 62(6):891-905. https://doi.org/10.1007/s13580-021-00360-z
Kishan K, Kumar SR, Abha S, Sahil K. Characterization of phytochemicals by GC-MS, in-vitro biological assays and micronutrient analysis by ICP-MS of Prunus domestica L. seeds. Plant Sci Today. 2022;9(4):1058-65. https://orcid.org/0000-0002-9734-6379
Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol. 2010;154(3):1439-59. https://doi.org/10.1104/pp.110.160275
Sun J, Janisiewicz WJ, Nichols B, Jurick II WM, Chen P. Composition of phenolic compounds in wild apple with multiple resistance mechanisms against postharvest blue mold decay. Postharvest Biol. Technol. 2017;127:68–75. https://doi.org/10.1016/j.postharvbio.2017.01.006
Carmona L, Zacarías L, Rodrigo MJ. Stimulation of coloration and carotenoid biosynthesis during postharvest storage of ‘Navelina’orange fruit at 12 C. Postharvest Biol Technol. 2012;74:108–117. https://doi.org/10.1016/j.postharvbio.2012.06.021
Almenar E, Hernández-Muñoz P, Lagarón JM, Catalá R, Gavara R. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). J Agric Food Chem. 2006; 54:86–91. https://doi.org/10.1021/jf0517492
Tietel Z, Porat R, Weiss K, Ulrich D. Identification of aroma-active compounds in fresh and stored ‘Mor’mandarins. Int. J. Food Sci. Technol. 2011, 46, 2225–2231. https://doi.org/10.1111/j.1365-2621.2011.02740.x
Brizzolara S, Santucci C, Tenori, L.; Hertog, M.; Nicolai, B.; Stürz, S.; Zanella, A.; Tonutti, P. A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage. Postharvest Biol. Technol. 2017;127:76–87.
Lado J, Gurrea A, Zacarías L, Rodrigo MJ. Influence of the storage temperature on volatile emission, carotenoid content and chilling injury development in Star Ruby red grapefruit. Food Chem. 2019;295:72–81. https://doi.org/10.1016/j.postharvbio.2017.01.008
Lado J, Gurrea A, Zacarías L, Rodrigo MJ. Influence of the storage temperature on volatile emission, carotenoid content and chilling injury development in Star Ruby red grapefruit. Food Chem. 2019;295:72–81. https://doi.org/10.1016/j.foodchem.2019.05.108
Yuen CM, Tridjaja NO, Wills RB, Wild BL. Chilling injury development of ‘Tahitian’lime,‘Emperor’mandarin,‘Marsh’grapefruit and ‘Valencia’orange. J Sci Food and Agric. 1995;67(3):335-9. https://doi.org/10.1002/jsfa.2740670310
Asai T, Matsukawa T, Kajiyama SI. Metabolomic analysis of primary metabolites in citrus leaf during defense responses. J Biosci Bioeng. 2017;123(3):376-81. https://doi.org/10.1016/j.jbiosc.2016.09.013
Yuan Y, Zhao Y, Yang J, Jiang Y, Lu F, Jia Y, Yang B. Metabolomic analyses of banana during postharvest senescence by 1H-high resolution-NMR. Food Chem. 2017;218:406-12. https://doi.org/10.1016/j.foodchem.2016.09.080
Downloads
Published
Versions
- 01-07-2023 (2)
- 11-06-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Rajni Rajan, Noorullah Rahmani, Kuldeep Pandey, Reena Prusty, Siddhrath Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).