This is an outdated version published on 11-06-2023. Read the most recent version.
Forthcoming

A review on metabolomics for quality improvement of fruit crops

Authors

DOI:

https://doi.org/10.14719/pst.2157

Keywords:

Metabolomics, Stress, Quality, Improvement, Fruit crops, Metabolites

Abstract

The field of metabolomics is gaining ground in plant biology, and its potential uses in agricultural biotechnology are expanding. Metabolomics is the study of metabolites, which are extremely small molecules. The phenotype correlates more strongly with the metabolomic profile than with the genomic, transcriptomic, or proteomic profiles. Plant metabolic profiling is another application of metabolomics that has been used to identify previously uncharacterized genes and their roles. The use of metabolomics to evaluate mutants and transgenic plants, track fruit development, determine quality, detect disease resistance, determine abiotic stress tolerance, etc., has become increasingly important. Metabolomics has also been applied to plant studies, which have become increasingly important in efforts to improve fruit quality. We first assess the profound influence metabolomics has had over the past decade, then provide an introduction to the field, its current contribution, and the hope it holds for enhancing fruit production.

Downloads

Download data is not yet available.

References

Fiehn O. Metabolomics-the link between genotypes and phenotypes. In: Town C. (eds). Functional Genomics, Springer: Dordrecht. 2002;155-71. https://link.springer.com/chapter/10.1007/978-94-010-0448-0_11

Parry MA, Hawkesford MJ. An integrated approach to crop genetic improvement. J Int Plant Biol. 2012; 54(4):250-59. https://doi.org/10.1111/j.1744-7909.2012.01109.x

Jones OA. Metabolomics and systems biology in human health and medicine. Cabi; 2014; ISBN: 978178064200. http://dx.doi.org/10.1079/9781780642000.0020

Hong J, Yang L, Zhang D, Shi J. Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci. 2016;17:767 https://doi.org/10.3390/ijms17060767

Alawiye TT, Babalola OO. Metabolomics: Current application and prospects in crop production. Biologia. 2021; 5:1-3. https://doi.org/10.2478/s11756-020-00574-z

Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for plant improvement: status and prospects. Front Plant Sci. 2017;8:1302 https://doi.org/10.3389/fpls.2017.01302

Pott DM, Durán-Soria S, Osorio S, Vallarino JG. Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits. CABI Agric Biosci. 2021; 2(1):1-20 https://doi.org/10.1186/s43170-020-00021-8

Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJ. Genetic analysis of metabolome–phenotype interactions: from model to crop species. Trends Gen. 2013; 29:41-50 https://doi.org/10.1016/j.tig.2012.09.006

Sharma V, Gupta P, Priscilla K, Hangargi B, Veershetty A, Ramrao DP, Suresh S, Narasanna R, Naik GR, Kumar A, Guo B. Metabolomics intervention towards better understanding of plant traits. Cells. 2021;10:346. https://doi.org/10.3390/cells10020346

Udayakumar M, Prem Chandar D, Arun N, Mathangi J, Hemavathi K, Seenivasagam R. PMDB: Plant Metabolome Database—a metabolomic approach. Medicinal Chem Res. 2012; 21(1):47-52. https://doi.org/10.1007/s00044-010-9506-z

Belgacem I, Pangallo S, Abdelfattah A, Romeo FV, Cacciola SO, Li Destri Nicosia MG, Ballistreri G, Schena L. Transcriptomic analysis of orange fruit treated with pomegranate peel extract (PGE). Plants. 2019;8(4):101. https://doi.org/10.3390/plants8040101

Li J, Yan G, Duan X, Zhang K, Zhang X, Zhou Y, Wu C, Zhang X, Tan S, Hua X, Wang J. Research progress and trends in metabolomics of fruit trees. Front. Plant Sci. 2022;13. https://doi.org/10.3389/2Ffpls.2022.881856

Amara A, Frainay C, Jourdan F, Naake T, Neumann S, Novoa-Del-Toro EM, Salek RM, Salzer L, Scharfenberg S, Witting M. Networks and Graphs Discovery in Metabolomics Data Analysis and Interpretation. Front. Mol. Biosci. 2022:223.

Gupta S, Schillaci M, Roessner U. Metabolomics as an emerging tool to study plant–microbe interactions. Emerg Top Life Sci. 2022;6(2):175-83. https://doi.org/10.1042/ETLS20210262

Kruger NJ, Ratcliffe RG. Pathways and fluxes: exploring the plant metabolic network. J Exp Bot. 2012;63(6):2243-6. https://doi.org/10.1093/jxb/ers073

Toubiana D, Fernie AR, Nikoloski Z, Fait A. Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol. 2013;31(1):29-36. https://doi.org/10.1016/j.tibtech.2012.10.011

Kuhalskaya A, Wijesingha Ahchige M, Perez de Souza L, Vallarino J, Brotman Y, Alseekh S. Network analysis provides insight into tomato lipid metabolism. Metabolites. 2020; 10(4):152. https://doi.org/10.3390/metabo10040152

Tohge T, de Souza LP, Fernie AR. Genome-enabled plant metabolomics. J Chromatogr B. 2014; 966:7-20. https://doi.org/10.1016/j.jchromb.2014.04.003

Toubiana D, Fernie AR, Nikoloski Z, Fait, A. Network analysis: Tackling complex data to study plant metabolism. Trends Biotechnol. 2013;31:29–36. https://doi.org/10.1016/j.tibtech.2012.10.011

Kleessen S, Nikoloski Z. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations. BMC Syst. Biol. 2012;6:16. https://doi.org/10.1186/1752-0509-6-16

Farre G, Twyman RM, Christou P, Capell T, Zhu C. Knowledge-driven approaches for engineering complex metabolic pathways in plants. Curr Opin Biotechnol. 2014; 32:54-60. https://doi.org/10.1016/j.copbio.2014.11.004

Fernie AR, Schauer N. Metabolomics-assisted breeding: a viable option for crop improvement. Trends Gen. 2009;25:39-48. https://doi.org/10.1016/j.tig.2008.10.010

Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K. KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol. 2012; 53:e1- e1. https://doi.org/10.1093/pcp/pcr165

Okazaki Y, Saito K. Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep. 2012;6:1-5. https://doi.org/10.1007/s11816-011-0191-2

Khakimov B, Bak S, Engelsen SB. High-throughput cereal metabolomics: Current analytical technologies, challenges and perspectives. J Cereal Sci. 2014;59:393-418. https://doi.org/10.1016/j.jcs.2013.10.002

Sweetlove LJ, Obata T, Fernie AR. Systems analysis of metabolic phenotypes: what have we learnt. Trends Plant Sci. 2014;19(4):222-30. https://doi.org/10.1016/j.tplants.2013.09.005

Begou O, Gika HG, Wilson ID, Theodoridis G. Hyphenated MS-based targeted approaches in metabolomics. Analyst. 2017;142(17):3079-100. https://pubs.rsc.org/en/content/articlelanding/2017/an/c7an00812k/unauth

Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 2012;69:3225–3243. https://doi.org/10.1007/s00018-012-1091-5

Azzi-Achkouty S, Estephan N, Ouaini N, Rutledge DN. Headspace solid-phase microextraction for wine volatile analysis. Crit Rev Food Sci Nutr. 2017;57(10):2009-20. https://doi.org/10.1080/10408398.2014.957379

Kroymann J. Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol. 2011;14(3):246-51. https://doi.org/10.1016/j.pbi.2011.03.021

Ramautar R, Somsen GW, de Jong GJ. CE?MS for metabolomics: Developments and applications in the period 2010–2012. Electrophoresis. 2013;34(1):86-98. https://doi.org/10.1002/elps.201200390

Monton MR, Soga T. Metabolome analysis by capillary electrophoresis–mass spectrometry. J Chromatography A. 2007;1168(1-2):237-46. https://doi.org/10.1016/j.chroma.2007.02.065

Krishnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot. 2005;56(410):255-65. https://doi.org/10.1093/jxb/eri010

Goulas V, Minas IS, Kourdoulas PM, Lazaridou A, Molassiotis AN, Gerothanassis IP, Manganaris GA. 1H NMR metabolic fingerprinting to probe temporal postharvest changes on qualitative attributes and phytochemical profile of sweet cherry fruit. Front Plant Sci. 2015;6:959. https://doi.org/10.3389/fpls.2015.00959

Bidlack WR, Omaye ST, Meskin MS, Topham DKW and Swanson CA. Vegetables, fruits, and cancer risk: the role of phytochemicals. p. 1–12. In: Phytochemicals: A New Paradigm, Bidlack, W.R., S.T. Omaye., M.S. Meskin and D.K.W. Topham (eds.). CRC Press, Boca Raton; 1998. p. 1-12.

Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol. 2008;148:730-50. https://doi.org/10.1104/pp.108.120691

Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom. 2007; 8:1-42. https://doi.org/10.1186/1471-2164-8-429

Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol. 2010; 154:1439-59. https://doi.org/10.1104/pp.110.160275

Rudell DR, Mattheis JP, Curry EA. Prestorage ultraviolet? white light irradiation alters apple peel metabolome. J Agri Food Chem. 2008;56(3):1138-47. https://doi.org/10.1021/jf072540m

Ding Y, Chang J, Ma Q, Chen L, Liu S, Jin S, Han J, Xu R, Zhu A, Guo J, Luo Y. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Plant Physiol. 2015;168(1):357-76. https://doi.org/10.1104/pp.114.255711

Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR, Drincovich MF. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol. 2011;157:1696-710. https://doi.org/10.1104/pp.111.186064

Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, Fang C. Metabolic profiling of strawberries (Fragaria× ananassa Duch.) during fruit development and maturation. J Exp Bot. 2011;1:62:1103-18. https://doi.org/10.1093/jxb/erq343

Oikawa A, Otsuka T, Nakabayashi R, Jikumaru Y, Isuzugawa K, Murayama H, Saito K, Shiratake K. Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLoS One. 2015;13(10):e0131408. https://doi.org/10.1371/journal.pone.0131408

Flamini R, De Rosso M, Bavaresco L. Study of grape polyphenols by liquid chromatography-high-resolution mass spectrometry (UHPLC/QTOF) and suspect screening analysis. J Anal Methods Chem. 2015;1-10.350259. 10.1155/2015/350259. PMID: 25734021; PMCID:PMC4334975

Cuadros-Inostroza A, Ruíz-Lara S, González E, Eckardt A, Willmitzer L, Pena-Cortés H. GC–MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage-and cultivar-dependent connectivity of primary metabolites. Metabolomics. 2016;12:39. https://doi.org/10.1007/s11306-015-0927-z

Grassmann J, Hippeli S, Elstner EF. Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem. 2002;40:471-8. https://doi.org/10.1016/S0981-9428(02)01395-5

Slisz, A.M., Breksa III, A.P., Mishchuk, D.O., McCollum, G. and Slupsky, C.M. Metabolomic analysis of citrus infection by ‘Candidatus Liberibacter’reveals insight into pathogenicity. J Proteome Res. 2012;11(8):4223-30. https://doi.org/10.1021/pr300350x

Balmer D., Flors V., Glauser G., Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013;4:82. https://doi.org/10.3389/fpls.2013.00082 Balmer D., Flors V., Glauser G., Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013;4:82. https://doi.org/10.3389/fpls.2013.00082

Mikulic-Petkovsek M., Schmitzer V., Slatnar A., Weber N., Veberic R., Stampar F., Munda A. and Koron D. Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection. J Agric Food Chem. 2013; 61(25):5987-95. https://doi.org/10.1021/jf402105g

Augustyn, W.A., Regnier, T., Combrinck, S. and Botha, B.M. Metabolic profiling of mango cultivars to identify biomarkers for resistance against Fusarium infection. Phytochem Lett.2014; 10,pp.civ-cx.https://doi.org/10.1016/j.phytol.2014.05.014

Nagpala EG, Guidarelli M, Gasperotti M, Masuero D, Bertolini P, Vrhovsek U, Baraldi E. Polyphenols variation in fruits of the susceptible strawberry cultivar Alba during ripening and upon fungal pathogen interaction and possible involvement in unripe fruit tolerance. J Agric Food Chem. 2016; 64(9):1869-78. https://doi.org/10.1021/acs.jafc.5b06005

Yun Z, Gao H, Liu P, Liu S, Luo T, Jin S, Xu Q, Xu J, Cheng Y, Deng X. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol. 2013; 13(1):1-6. https://doi.org/10.1186/1471-2229-13-44

Wang J, Sun L, Xie L, He Y, Luo T, Sheng L, Luo Y, Zeng Y, Xu J, Deng X, Cheng Y. Regulation of cuticle formation during fruit development and ripening in ‘Newhall Navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. Plant Sci. 2016;243:131-44. https://doi.org/10.1016/j.plantsci.2015.12.010

Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics. 2007; 7:111-34. https://doi.org/10.1007/s10142-006-0039-y

Cramer GR. Abiotic stress and plant responses from the whole vine to the genes. Aus J Grape Wine Res. 2010;16:86-93.

Pedreschi R, Franck C, Lammertyn J, Erban A, Kopka J, Hertog M, Verlinden B, Nicolaï B. Metabolic profiling of ‘Conference Pears under low oxygen stress. Postharvest Biol Technol. 2009;51:123-30. https://doi.org/10.1111/j.1755-0238.2009.00058.x

Lee J, Mattheis JP, Rudell DR. Antioxidant treatment alters metabolism associated with internal browning in Braeburn Apples during controlled atmosphere storage. Postharvest Biol Technol. 2012;68:32-42. https://doi.org/10.1016/j.postharvbio.2012.01.009

Wulff-zottele CR, Gatzke N, Kopka J, Orellana A, Hoefgen R, Fisahn J, Hesse H. Photosynthesis and metabolism interact during acclimation of Arabidopsis thaliana to high irradiance and sulphur depletion. Plant Cell Env. 2010;33:1974-88. https://doi.org/10.1111/j.1365-3040.2010.02199.x

Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, Fait A. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol. 2013;13(1):1-6. https://doi.org/10.1186/1471-2229-13-184

Chen L, Zhao X, Wu JE, He Y, Yang H. Metabolic analysis of salicylic acid-induced chilling tolerance of bananas using NMR. Food Research Int. 2020; 128:108796. https://doi.org/10.1016/j.foodres.2019.108796

Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol. 2014;164(4):1759-71. https://doi.org/10.1104/pp.113.231720

Tian S, Qin G, Li B, Wang Q, Meng X. Effects of salicylic acid on disease resistance and postharvest decay control of fruits. Stewart Postharvest Rev. 2007;6(2):1-7. 10.2212/spr.2007.6.2

Zhu A, Li W, Ye J, Sun X, Ding Y, Cheng Y, Deng X. Microarray expression profiling of postharvest Ponkan mandarin (Citrus reticulate L.) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. J Int Plant Biol. 2011;53:358–74. https://doi.org/10.1111/j.1744-7909.2011.01035.x

Ma Q, Ding Y, Chang J, Sun X, Zhang L, Wei Q, Cheng Y, Chen L, Xu J, Deng X. Comprehensive insights on how 2, 4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches. J Exp Bot. 2014; 65(1):61-74. https://doi.org/10.1093/jxb/ert344

Hatoum D, Annaratone C, Hertog ML, Geeraerd AH, Nicolai BM. Targeted metabolomics study of ‘Braeburn Apples during long-term storage. Postharvest Biol Technol. 2014; 96:33-41. https://doi.org/10.1016/j.postharvbio.2014.05.004

Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H (2011) Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLoS One. 2011;6(2):e16989. https://doi.org/10.1371/journal.pone.0016989

He Y, Han J, Liu R, Ding Y, Wang J, Sun L, Yang X, Zeng Y, Wen W, Xu J, Zhang H. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Horti Res. 2018; 5(1):1-4. https://doi.org/10.1038/s41438-018-0051-0

Wang Z, Cui Y, Vainstein A, Chen S, Ma H. Regulation of fig (Ficus carica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci. 2017; 8:1990. https://doi.org/10.3389/fpls.2017.01990

Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot. 2007; 58:4161-71. https://doi.org/10.1093/jxb/erm273

Pan Z, Li Y, Deng X, Xiao S. Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics. 2014; 10(3):508-23. https://doi.org/10.1007/s11306-013-0597-7

Fuzfai Z, Katona ZF, Kovacs E, Molnar-Perl I. Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem. 2004;52(25):7444-7452. https://doi.org/10.1021/jf040118p

Amaki K, Saito E, Taniguchi K, Joshita K, Murata M. Role of chlorogenic acid quinone and interaction of chlorogenic acid quinone and catechins in the enzymatic browning of apple. Biosci Biotechnol Biochem. 2011;75(5)100444:1-4. https://doi.org/10.1271/bbb.100444

Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M. QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus× domestica Borkh.). J Exp Bot. 2010;61(11):3029-39. https://doi.org/10.1093/jxb/erq130

Tohge T, Mettler T, Arrivault S, Carroll AJ, Stitt M, Fernie A. From models to crop species: caveats and solutions for translational metabolomics. Front Plant Sci. 2011; 2:61. https://doi.org/10.3389/fpls.2011.00061

Li, P., Ma, F. and Cheng, L. Primary and secondary metabolism in the sun?exposed peel and the shaded peel of apple fruit. Physiol Plant. 2013;148(1):9-24. https://doi.org/10.1111/j.1399-3054.2012.01692.x

Heng Z, Sheng O, Huang W, Zhang S, Fernie AR, Motorykin I, Kong Q, Yi G, Yan S. Integrated proteomic and metabolomic analysis suggests high rates of glycolysis are likely required to support high carotenoid accumulation in banana pulp. Food Chem. 2019; 297:125016. https://doi.org/10.1016/j.foodchem.2019.125016

Son HS, Hwang GS, Ahn HJ, Park WM, Lee CH, Hong YS. Characterization of wines from grape varieties through multivariate statistical analysis of 1H NMR spectroscopic data. Food Res Int. 2009;42:1483-91. https://doi.org/10.1016/j.foodres.2009.08.006

Wang MY, MacRae E, Wohlers M, Marsh K. Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward’and A. chinensis ‘Hort16A’. Postharvest Biol Technol. 2011;59(1):16-24. https://doi.org/10.1016/j.postharvbio.2010.08.010

Akhatou I, González-Domínguez R, Fernández-Recamales Á. Investigation of the effect of genotype and agronomic conditions on metabolomic profiles of selected strawberry cultivars with different sensitivity to environmental stress. Plant Physiol Biochem. 2016;101:14-22. https://doi.org/10.1016/j.plaphy.2016.01.016

Commisso M, Bianconi M, Di Carlo F, Poletti S, Bulgarini A, Munari F, Negri S, Stocchero M, Ceoldo S, Avesani L, Assfalg M. Multi-approach metabolomics analysis and artificial simplified phytocomplexes reveal cultivar-dependent synergy between polyphenols and ascorbic acid in fruits of the sweet cherry (Prunus avium L.). PLoS One. 2017;12(7):e0180889. https://doi.org/10.1371/journal.pone.0180889

Vikram A, Prithiviraj B, Hamzehzarghani H, Kushalappa AC. Volatile metabolite profiling to discriminate diseases of McIntosh apple inoculated with fungal pathogens. J Sci Food Agric. 2004;84:1333-40.

Cuthbertson D, Andrews PK, Reganold JP, Davies NM, Lange BM. Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J Agric Food Chem. 2012;60:8552-60. https://doi.org/10.1002/jsfa.1828

Nardozza S, Boldingh HL, Osorio S, Höhne M, Wohlers M, Gleave AP, MacRae EA, Richardson AC, Atkinson RG, Sulpice R, Fernie AR. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. J Exp Bot. 2013;64:5049-63. https://doi.org/10.1093/jxb/ert293

Hatoum D, Annaratone C, Hertog ML, Geeraerd AH, Nicolai BM. Targeted metabolomics study of ‘Braeburn Apples during long-term storage. Postharvest Biol Technol. 2014;96:33-41. https://doi.org/10.1016/j.postharvbio.2014.05.004

Ainalidou A, Tanou G, Belghazi M, Samiotaki M, Diamantidis G, Molassiotis A, Karamanoli K. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. J Proteomics. 2016;143:318-33. https://doi.org/10.1016/j.jprot.2016.02.013

Cebulj A, Cunja V, Mikulic-Petkovsek M, Veberic R. Importance of metabolite distribution in apple fruit. Sci Hort. 2017;214:214-20. https://doi.org/10.1016/j.scienta.2016.11.048

Lim S, Lee JG, Lee EJ. Comparison of fruit quality and GC–MS-based metabolite profiling of kiwifruit ‘Jecy green’: Natural and exogenous ethylene-induced ripening. Food Chem. 2017;234:81-92. https://doi.org/10.1016/j.foodchem.2017.04.163

Win NM, Yoo J, Lwin HP, Lee EJ, Kang IK and Lee J. Effects of 1-methylcyclopropene and aminoethoxyvinylglycine treatments on fruit quality and antioxidant metabolites in cold-stored ‘Sangjudungsi’persimmons. Hort Environ Biotechnol. 2021; 62(6):891-905. https://doi.org/10.1007/s13580-021-00360-z

Kishan K, Kumar SR, Abha S, Sahil K. Characterization of phytochemicals by GC-MS, in-vitro biological assays and micronutrient analysis by ICP-MS of Prunus domestica L. seeds. Plant Sci Today. 2022;9(4):1058-65. https://orcid.org/0000-0002-9734-6379

Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol. 2010;154(3):1439-59. https://doi.org/10.1104/pp.110.160275

Sun J, Janisiewicz WJ, Nichols B, Jurick II WM, Chen P. Composition of phenolic compounds in wild apple with multiple resistance mechanisms against postharvest blue mold decay. Postharvest Biol. Technol. 2017;127:68–75. https://doi.org/10.1016/j.postharvbio.2017.01.006

Carmona L, Zacarías L, Rodrigo MJ. Stimulation of coloration and carotenoid biosynthesis during postharvest storage of ‘Navelina’orange fruit at 12 C. Postharvest Biol Technol. 2012;74:108–117. https://doi.org/10.1016/j.postharvbio.2012.06.021

Almenar E, Hernández-Muñoz P, Lagarón JM, Catalá R, Gavara R. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). J Agric Food Chem. 2006; 54:86–91. https://doi.org/10.1021/jf0517492

Tietel Z, Porat R, Weiss K, Ulrich D. Identification of aroma-active compounds in fresh and stored ‘Mor’mandarins. Int. J. Food Sci. Technol. 2011, 46, 2225–2231. https://doi.org/10.1111/j.1365-2621.2011.02740.x

Brizzolara S, Santucci C, Tenori, L.; Hertog, M.; Nicolai, B.; Stürz, S.; Zanella, A.; Tonutti, P. A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage. Postharvest Biol. Technol. 2017;127:76–87.

Lado J, Gurrea A, Zacarías L, Rodrigo MJ. Influence of the storage temperature on volatile emission, carotenoid content and chilling injury development in Star Ruby red grapefruit. Food Chem. 2019;295:72–81. https://doi.org/10.1016/j.postharvbio.2017.01.008

Lado J, Gurrea A, Zacarías L, Rodrigo MJ. Influence of the storage temperature on volatile emission, carotenoid content and chilling injury development in Star Ruby red grapefruit. Food Chem. 2019;295:72–81. https://doi.org/10.1016/j.foodchem.2019.05.108

Yuen CM, Tridjaja NO, Wills RB, Wild BL. Chilling injury development of ‘Tahitian’lime,‘Emperor’mandarin,‘Marsh’grapefruit and ‘Valencia’orange. J Sci Food and Agric. 1995;67(3):335-9. https://doi.org/10.1002/jsfa.2740670310

Asai T, Matsukawa T, Kajiyama SI. Metabolomic analysis of primary metabolites in citrus leaf during defense responses. J Biosci Bioeng. 2017;123(3):376-81. https://doi.org/10.1016/j.jbiosc.2016.09.013

Yuan Y, Zhao Y, Yang J, Jiang Y, Lu F, Jia Y, Yang B. Metabolomic analyses of banana during postharvest senescence by 1H-high resolution-NMR. Food Chem. 2017;218:406-12. https://doi.org/10.1016/j.foodchem.2016.09.080

Published

11-06-2023

Versions

How to Cite

1.
Rajan R, Rahmani N, Pandey K, Prusty R, Singh S. A review on metabolomics for quality improvement of fruit crops. Plant Sci. Today [Internet]. 2023 Jun. 11 [cited 2024 Dec. 21];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2157

Issue

Section

Mini Reviews

Most read articles by the same author(s)